• Title/Summary/Keyword: PCR(polymerase chain reaction)

Search Result 2,782, Processing Time 0.027 seconds

Sensitive method for the detection of Apple scar skin viroid(ASSVd) by nested reverse transcription-polymerase chain reaction

  • Lee, Sung-Joon;Kim, Chung;Sim, Sang-Mi;Lee, Dong-Hyuk;Lee, Jai-Youl
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.143.2-143
    • /
    • 2003
  • A rapid and sensitive assay for the specific detection of plant viroids using reverse transcription-polymerase chain reaction(RT-PCR) has been developed already. The nested RT-PCR assay cloud be applied for the detection of apple scar skin viroid(ASSVd) from young leaves and other tissues. ASSVd has central conserved region(CCR), terminal left(T$\sub$L/) and terminal right(T$\sub$R/) domain. Primers were designed from these regions. Primer sets were successfully applicable for the amplification of full length or partial region of ASSVd by nested RT-PCR. Nested RT-PCR assay was more sensitive and accurate method to detect ASSVd from young trees during the early time of apple cultivation.

  • PDF

Thermal Cycling Control System Design for Polymerase Chain Reaction(PCR) Machine (중합효소연쇄반응 기기의 온도 사이클링 제어시스템 설계)

  • Kim Jong-Hae;Cho Yong-Seuk;Oh Do-Chang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.5
    • /
    • pp.419-424
    • /
    • 2006
  • In this study, a thermal control system which applied a Peltier device for the polymerase chain reaction(PCR) machine is to be designed. Here in order for it to easily follow the characteristics of the thermal cycle existing for gene amplification of the PCR sample, a PCR control board utilizing a thermal sensor, a Peltier, and a 8 bit microprocessor is made up. Especially a fuzzy type PD control algorithm is applied periodically in time response, and control system is implemented. For that matter, the characteristic data of subject system is obtained and analysed to begin with. Based on this analysed data, the proposed control algorithm is applied and an evaluation of the performance of the whole system take place through the PC.

Development of a Multiplex Reverse Transcription-Polymerase Chain Reaction Assay for the Simultaneous Detection of Three Viruses in Leguminous Plants

  • Park, Chung Youl;Min, Hyun-Geun;Lee, Hong-Kyu;Maharjan, Rameswor;Yoon, Youngnam;Lee, Su-Heon
    • Research in Plant Disease
    • /
    • v.24 no.4
    • /
    • pp.348-352
    • /
    • 2018
  • A multiplex reverse transcription-polymerase chain reaction (mRT-PCR) assay was developed for the detection of Clover yellow vein virus (ClYVV), Peanut mottle virus (PeMoV), and Tomato spotted wilt virus (TSWV), which were recently reported to infect soybean and azuki bean in Korea. Species-specific primer sets were designed for the detection of each virus, and their specificity and sensitivity were tested using mixed primer sets. From among the designed primer sets, two combinations were selected and further evaluated to estimate the detection limits of uniplex, duplex, and multiplex RT-PCR. The multiplex RT-PCR assay could be a useful tool for the field survey of plant viruses and the rapid detection of ClYVV, PeMoV, and TSWV in leguminous plants.

Production of DNA polymerase from Thermus aquaticus in recombinant Escherichia coli

  • Kim, Sung-Gun;Park, Jong-Tae
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.3
    • /
    • pp.245-249
    • /
    • 2014
  • Among dozens of DNA polymerases cloned from thermophilic bacteria, Taq DNA polymerase from Thermus aquaticus has been most frequently used in polymerase chain reaction (PCR) that is being applied to gene cloning, DNA sequencing, gene expression analysis, and detection of infectious and genetic diseases. Since native Taq DNA polymerase is expressed at low level in T. aquaticus, recombinant Escherichia coli system was used to produce Taq DNA polymerase in a large amount. Taq DNA polymerase was expressed as a soluble form under the control of tac promoter in E. coli, and purified by heat treatment and ion exchange chromatographies. The purified Taq DNA polymerase was nearly homogeneous and exhibited a similar DNA amplification activity with a commercial Taq DNA polymerase.

A Duplex PCR Assay for Differentiating Native Common Buckwheat and Tartarian Buckwheat, and Its Application for the Rapid Detection of Buckwheat Ingredients in Food

  • Jeon, Young-Jun;Hong, Kwang-Won
    • Food Science and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.357-361
    • /
    • 2008
  • One of the major allergenic proteins in common buckwheat (Fagopyrum elculentum) was found to be a BW10KD. In this work, allergenic BW10KD genomic DNAs from the native common buckwheat 'Pyeongchang' and Tartarian buckwheat 'Clfa47' were cloned by polymerase chain reaction (PCR), and their nucleotide sequences were determined. In addition, a novel PCR assay targeting the allergenic BW10KD gene was developed to detect and differentiate both buckwheat species in food. The nucleotide sequences of the BW10KD genomic DNA from 'Pyeongchang' and 'Clfa47' were 94% identical. Base differences in the nucleotide sequences of the BW10KD genes are probably useful as a molecular marker for species-specific identification. The 'Pyeongchang'-specific primer set 154PF/400PR and the 'Clfa47'-specific primer set 154DF/253DR generated 247 and 100 bp fragments in singleplex PCR, respectively. A duplex PCR assay with 2 species-specific primer sets simultaneously differentiated the 'Pyeongchang' and 'Clfa47' in a single reaction. The PCR assay also successfully allowed for the rapid detection of buckwheat ingredients in foods.

(CA/GT)n Simple Sequence Repeat DNA Polymorphism in Chlamydomonas reinhardtii (녹조류 Chlamydomonas reinhardtii의 (CA/GT)n Simple Sequence Repeat DNA 다형현상)

  • ;;Marvin W. FAWLEY
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.2
    • /
    • pp.113-117
    • /
    • 1997
  • Simple sequence repeats (SSR) are widely dispersed throughout eukaryotic genomes, highly polymorphic, and easily typed using polymerase chain reaction (PCR). The objective of this study was to determine the polymorphism of different Chlamydomonas reinhartdtii strains and to determine the mode of inheritance of the SSR locus in Chlamydomonas. A genomic DNA library of C. reinhardtii was constructed and screened with a radiolabeled $(AC)_{11}$ probe for the selection of (CA/GT)n repeat clone. Selected clone was seqeuenced, and PCR primer set flanking (CA/GT)n sequence was constructed. PCR was used to specifically amplify the SSR locus from multiple isolates of C. reinhardtii. The locus was polymorphic in some of the C. reinhardtii isolates. However, the locus was amplified only 4 of 6 isolates of C. reinhardtii, not in other 2 isolates of C. reinhardtii, suggesting that this locus is not extensively conserved. A simple Mendelian inheritance pattern was found, which showed 2:2 segregation in the tetrads resulting from a cross between C. reinhardtii and C. smithii. Our results suggest that this simple sequence repeat DNA polymorphism will be useful for identity testing, population studies, linkage analysis, and genome mapping in Chlamydomonas.

  • PDF

Identification of Salmonella Enteritidis and S. Typhimurium by multiplex polymerase chain reaction (Multiplex PCR 기법을 이용한 Salmonella Enteritidis와 S. Typhimurium의 특이적 검출에 관한 연구)

  • Lee, Woo-Won;Lee, Seung-Mi;Lee, Gang-Rok;Lee, Dong-Soo;Park, Ho-Kuk
    • Korean Journal of Veterinary Service
    • /
    • v.32 no.2
    • /
    • pp.147-153
    • /
    • 2009
  • Salmonella species are the most important etiologic agents of food-borne acute gastroenteritis. The most common serotypes isolated from humans are Salmonella enterica serotype Typhimurium (S. Typhimurium) and S. Enteritidis. Traditional detection methods for Salmonella are based on cultures using selective media and characterization of suspicious colonies by biochemical and serological tests. These methods are generally time-consuming and not so highly sensitive. Recently, the polymerase chain reaction (PCR) has been used as a highly sensitive, specific, and rapid test for the presence of pathogenic bacteria. In this study, a multiplex PCR (m-PCR) was used to detect S. Typhimurium and S. Enteritidis. We selected m-PCR target genes, which were the spv (virulence plasmid specific for S. Enteritidis) and sefA (S. Enteritidis fimbrial antigen) genes, fliC (H1-i antigen specific for S. Typhimurium) and a randomly cloned sequence specific for the genus Salmonella. With m-PCR, random sequence was detected from all strains of Salmonella spp, spv and sefA were detected from all strains of S. Enteritidis (100%), and fliC was detected from all strains of S. Typhimurium (100%). This assay indicate that the specificity of the m-PCR make them potentially valuable tools for detection of S. Typhimurium and S. Enteritidis.

Comparison of Infrequent Restriction Site-Polymerase Chain Reaction and Pulsed-Field Gel Electrophoresis for Molecular Typing of Staphylococcus aureus and Escherichia coli (황색포도구균과 대장균의 기준형별 결정에 있어서 Infrequent Restriction Site Polymerase Chain Reaction과 Pulsed-Field Gel Electrophoresis의 변별력 비교)

  • Shin, Wan-Shik;Kim, Tai-Gye;Choi, Jung-Hyun;Lee, Dong-Gun;Choi, Hee-Baeg;Yoo, Jin-Hong;Kim, Jong-Hyun;Kang, Jin-Han;Min, Woo-Sung
    • The Journal of the Korean Society for Microbiology
    • /
    • v.35 no.4
    • /
    • pp.289-297
    • /
    • 2000
  • Background: Staphylococcus aureus (s. aureus) and Escherichia coli (E. coli) are major pathogens in community and hospital. And they sometimes cause the outbreak in hospital in the immunocompromised patients. Pulsed-field gel electrophoresis (PFGE) has been regarded as a standard method for genotyping in epidemiologic studies, but it is laborious and time-consuming. Infrequent restriction site-polymerase chain reaction (IRS-PCR), a new genotyping methods, was performed to compare the applicability with PFGE. Methods: We performed PFGE and IRS-PCR on S. aurues (n=120) and E. coli (n=117) which were collected clinically in 4 different hospitals. We assessed each method in terms of discriminatory power, quality, and efficiency. Results: In E. coli, the discriminatory power of IRS-PCR was $46.7{\sim}86.7%$, and that of PFGE was $88.9{\sim}96.7%$ according to hospital. But in S. aurues, the discriminatory power of IRS-PCR was $20{\sim}56.7%$, and that of PFGE was $40{\sim}90%$ according to hospital. The typablity and reproducibility of IRS-PCR were 100% of each. PFGE needed four days to complete the procedure, but IRS-PCR could be performed within one day, IRS-PCR showed better resolution than PFGE. Conclusion: In case of gram negative bacteria (like E. coli), IRS-PCR could be a reliable alternative for epidemiologic typing due to better efficiency and comparable discriminatory power. But in the case of gram positive bacteria (like S. aureus), IRS-PCR does not seem to be suitable for the strain-to-strain differentiation. More trials and changes of restriction enzymes or primers could reveal the efficacy of IRS-PCR in the field of molecular typing.

  • PDF

Differential diagnosis among Marek's disease, reticuloendotheliosis and avian leukosis by polymeras chain reaction (중합효소연쇄반응을 이용한 닭 종양성 질병의 감별진단에 관한 연구)

  • Seong, Hwan-woo;Kim, Sun-jung
    • Korean Journal of Veterinary Research
    • /
    • v.38 no.1
    • /
    • pp.101-106
    • /
    • 1998
  • The present study attempted to apply polymerase chain reaction (PCR) to develop a rapid differential diagnosis among Marek's disease, reticuloendotheliosis and avian leukosis. The primers chosen to detect Marek's disease virus (MDV) flank the 132bp tandem direct repeat of the MDV genome. The primers selected for reticuloendotheliosis virus (REV) and avian leukosis virus (ALV) are based on proviral long terminal repeats of spleen necrosis virus and Rous-associated virus-2 genomes, respectively. The specific PCR products of MDV, REV and ALV were observed with each primer and the reaction was not cross-reacted among the viruses. MDV-specific DNA was also amplified from the MDV-induced lymphoma (MDCC-MSB1) but not from the REV-induced tumor and ALV-induced lymphoma (LSCC-1104B1). In addition, proviral DNA of REV from REV-induced tumor and proviral DNA of ALV from ALV-induced lymphoma were also amplified by REV-specific and ALV-specific PCRs, respectively. Therefore these three PCR methods may be used to rapidly differentiate among MDV, REV and ALV-associated tumors in diagnosis.

  • PDF

Detection of Norovirus in Contaminated Ham by Reverse Transcriptase-PCR and Nested PCR

  • Kim, Seok-Ryel;Kim, Du-Woon;Kwon, Ki-Sung;Hwang, In-Gyun;Oh, Myung-Joo
    • Food Science and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.651-654
    • /
    • 2008
  • In order to enhance the efficacy of norovirus detection by reverse transcriptase-polymerase chain reaction (RT-PCR) and nested PCR, this study developed a norovirus mRNA concentration method using poly oligo dT-conjugated magnetic beads. An efficient norovirus detection protocol was performed on commercial ham using 2 viral elution buffers (glycine buffer and Tris beef extract buffer) and 2 concentration solutions [polyethylene glycol (PEG) and zirconium hydroxide]. The different approaches were verified by RT-PCR and nested PCR. This method was performed on ham in less than 8 hr by artificial inoculation of serial dilutions of the virus ranging from 1,000 to 1 RT-PCR unit/mL. The viral extraction and concentration method had 10-fold higher sensitivity using the combination of Tris beef extract buffer and PEG as compared to glycine buffer and zirconium hydroxide. This method proved that RT-PCR and nested PCR have the sensitive ability to detect norovirus in commercial ham, in that norovirus was successfully detected in artificially contaminated samples at a detection level as low as 1-10 RT-PCR unit/mL. Overall, such a detection limit suggests this protocol is both quick and efficient in terms of its potential use for detecting norovirus in meat products.