• Title/Summary/Keyword: PCM(Phase Change Materials)

Search Result 99, Processing Time 0.024 seconds

Investigation of Mix Design Method in Concrete Mixed with SSPCM Based on Mechanical Behaviors (SSPCM 혼입 콘크리트의 역학적 성능 기반 배합설계기법 연구)

  • Min, Hae-Won;Kim, Hee-Sun
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.1-7
    • /
    • 2015
  • As energy consumption of building and the reduction of carbon dioxide emissions have been emphasized, phase change materials(PCM) have been introduced as building materials due to its high heat storage performance. Using shape-stabilizing technique, octadecane/xGnP shape-stabilized PCM(SSPCM) can prevent leakage and improve heat storage performance. The objectives of this study are to propose mix design method of concrete mixed with SSPCM and to evaluate mechanical behaviors of the concrete mixed with SSPCM manufactured according to the proposed mix design. Based on the previously reported material test result, the existing mix design of plain concrete(Concrete standard specification, 2009) is modified to consider reduction of strength in concrete due to the addition of SSPCM. To verify the proposed mix design, specimens are fabricated according to the proposed mix design and axial strength tests and three-point loading tests are performed. Test results show that compressive strengths of the tested specimens reach the designed strength even when two different mix ratios of SSPCM are used. From three-point loading tests, flexural stresses decrease as mix ratio of SSPCM increases.

An Experimental Study on the Evaluation of Thermal Performance of Floor mortar with PCM (PCM을 혼입한 방통 모르타르의 열적 성능 평가에 관한 실험적 연구)

  • Kim, Bo-Hyun;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.5-6
    • /
    • 2011
  • CO2 reduction is the most urgent issue the world is facing. So, there should be a measure to reduce the CO2 emission in construction industry which has more released CO2 gas than other industries. CO2 emission of building depend on using energy. Then efficient energy use process working efficiently at CO2 reduction. Therefore In this study, author find the technical possibility of saving the building energy using the PCM which is able to control heat, storage heat and potential heat. So, it considered that apply to floor heating type which is major heating system of living space in Korea. And evaluate the Using possibility.

  • PDF

An Experimental Study on the Heat Transfer Characteristics of a Finned-Tube Heat Exchanger in a PCM Thermal Energy Storage System (상변화물질을 적용한 핀-관 열교환기의 열전달 성능 특성에 관한 실험적 연구)

  • Jung, Dong Il;Chang, Min;Kim, Yongchan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.1
    • /
    • pp.15-20
    • /
    • 2016
  • Phase change materials (PCM) are able to store a large amount of latent heat, and can be applied to thermal energy storage systems. In a PCM, it takes a long time to store heat in the storage system because of the low thermal conductivity. In this study, a finned-tube-in-tank heat exchanger was applied to a PCM thermal energy storage system to increase heat transfer efficiency. The effects of geometric and operating parameters were investigated, and the results were compared with those of the tube-in-tank heat exchanger. The finned-tube-in-tank heat exchanger showed higher heat transfer effectiveness than the tube-in-tank heat exchanger. The heat exchange effectiveness of the storage tank was determined as a function of the average NTU.

A high performance nonvolatile memory cell with phase change material of $Ge_1Se_1Te_2$ ($Ge_1Se_1Te_2$ 상변화 재료를 이용한 고성능 비휘발성 메모리에 대한 연구)

  • Lee, Jae-Min;Shin, Kyung;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.15-16
    • /
    • 2005
  • Chalcogenide phase change memory has high performance to be next generation memory, because it is a nonvolatile memory processing high programming speed, low programming voltage, high sensing margin, low consumption and long cycle duration. We have developed a new material of PRAM with $Ge_1Se_1Te_2$. This material has been propose to solve the high energy consumption and high programming current. We have investigated the phase transition behaviors in function of various process factor including contact size, cell size, and annealing time. As a result, we have observed that programming voltage and writing current of $Ge_1Se_1Te_2$ are more improved than $Ge_2Sb_2Te_5$ material.

  • PDF

Properties of Autogenous Shrinkage according to Hydration Heat Velocity of High Strength Concrete Considering Mass Member (매스부재를 고려한 고강도콘크리트의 수화발열상승속도 조절에 따른 자기수축 특성)

  • Koo, Kyung-Mo;Kim, Gyu-Yong;Hong, Sung-Hyun;Nam, Jeong-Soo;Shin, Kyoung-Su;Khil, Bae-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.4
    • /
    • pp.369-376
    • /
    • 2012
  • In this study, to reduce the hydration heat velocity (HHV) of high-strength mass concrete at early ages, phase change materials (PCM) that could absorb hydration heat were applied, and the changes in autogenous shrinkage were investigated, as well as the relationship between the hydration temperature and autogenous shrinkage. The acceleration of the cement hydration process by the PCM leads to an early setting and a higher development of the compressive strength and elastic modulus of concrete at very early ages. The function of PCM could be worked below the original melting point due to the eutectic effect, while the hydration temperature and HHV of high-strength mass concrete can be decreased through the use of the PCM. A close relationship was found between the hydration temperature and autogenous shrinkage: the higher the HHV, the greater the ultimate autogenous shrinkage.

Preparation and Thermal Characteristics of Hexadecane/xGnP Shape-stabilized Phase Change Material for Thermal Storage Building Materials (축열건축자재 적용을 위한 Hexadecane/xGnP SSPCM 제조 및 열적특성)

  • Kim, Sug-Hwan;Jeong, Su-Gwang;Lim, Jae-Han;Kim, Su-Min
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.1
    • /
    • pp.73-78
    • /
    • 2013
  • Hexadecane and exfoliated graphite nanoplate (xGnP)composite was prepared as a shape-stabilized phase change material (SSPCM) in a vacuum to develope thermal energy storage. The Hexadecane as an organic phase change material (PCM) is very stable against phase separation of PCM and has a melting point at $18^{\circ}C$ that is under the thermally comfortable temperature range in buildings. The xGnP is a porous carbon nanotube material with high thermal conductivity. Scanning electron microscope (SEM) and Fourier transformation infrared spectrophotometer (FT-IR)were used to confirm the chemical and physical stability of Hexadecane/xGnP SSPCM. In addition, thermal properties were determined by Deferential scanning calorimeter(DSC) and Thermogravimetric analysis (TGA). The specific heat of Hexadecane/xGnPSSPCM was $10.0J/g{\cdot}K$ at $21.8^{\circ}C$. The melting temperature range of melting and freezing were found to be $16-25^{\circ}C$ and $17-12^{\circ}C$. At this time, the laten heats of melting and freezing were 96.4J/g and 94.8J/g. The Hexadecane was impregnated into xGnP as much about 48.8% of Hexadecane/xGnP SSPCM's mass fraction.

Thermal Environment Characteristic of the Heat Storage Gypsum Board Included with Phase Change Material (PCM 함유된 축열석고보드의 열환경특성)

  • Kwon, Oh-Hoon;Yun, Huy-Kwan;Han, Seong-Kuk;Ahn, Dae-Hyun;Shim, Myeong-Jin;Cho, Sung-Woon;Park, Jong-Soon;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.570-574
    • /
    • 2010
  • The main function of conventional insulation materials is only to block the heat transfer and reduce heat loss from the building. On the other hand, thermal storage materials can work as an energy saver by absorbing or emitting heat within a specific temperature range. Thermal storage materials for building can maintain a constant temperature by effectively regulating the cycle of indoor temperature. As a result, we can enhance the performance of a cooling and heating system efficiently. In this study, phase change materials (PCMs) were added as thermal storage materials into gypsum boards which are extensively used for building material and we found out the thermal environmental characteristics. In addition, we checked out some problems when applying the thermal storage materials to buildings. Finally, This study set out to examine the degree of environmental-friendly characteristics of thermal storage building materials by analyzing the amount of TVOC and HCHO contents with the possibility of pollutants emission.

Experiment and Property Study of Ondol Panel Based on Phase Change Material (PCM을 이용한 온돌패널의 실험 및 특성연구)

  • Yoon, Doo-Han;Choi, Bong-Su;Hong, Hi-Ki
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.122-125
    • /
    • 2006
  • This paper deals with the Ondol, Korean under-floor heating system using latent heat storage materials. It has been recognized that the heating system using the latent heat storage materials are economically efficient and comfortable. For the comparison and analysis to the data of the existing experiment, a repetitive experiment makes sure the ability of Ondol panel.

  • PDF

Preparation and Application of Polyurethane-urea Microcapsules Containing Phase Change Materials

  • Kwon Ji-Yun;Kim Han-Do
    • Fibers and Polymers
    • /
    • v.7 no.1
    • /
    • pp.12-19
    • /
    • 2006
  • For thermal adaptable fabrics, the polyurethane-urea microcapsules containing phase-change materials (PCMs: hexadecane, octadecane and eicosane) were successfully synthesized by interfacial polycondensation using 2,4-toluene diisocyanate (TDI)/poly(ethylene glycol) (PEG400)/ethylene diamine (EDA) as shell monomers and nonionic surfactant NP-12 in an emulsion system under stirring rates of $3,000{\sim}13,000$ rpm. The mean particle size of microcapsule decreased significantly with increasing the stirring rate up to 11,000 rpm, and then leveled off. The mean particle size increased with increasing the content and molecular weight (eicosane > octadecane > hexadecane) of PCMs at the same stirring rate. The mean particle sizes of microcapsules were found to decrease with increasing the NP-12 content up to 1.5 wt%, and thereafter increased a little. It was found that the melting temperature ($T_m$) and crystallization temperature ($T_c$) of three kinds of encapsulated PCMs and their enthalpy changes (${\Delta}H_m,{\Delta}H_c$) increased with increasing PCM contents. The encapsulation efficiencies (Ee) of hexadecane microcapsule linearly increased with increasing the content of hexadecane. It was found that the stable microcapsule containing 50 wt% of hexadecane could be obtained in this study. However, Ee of octadecane and eicosane microcapsules increased with increasing PCM's contents up to 40 wt%, and then decreased a little. By considering the encapsulation efficiency, it was found that the maximum/optimum contents of octadecane and eicosane microcapsules were about 40 wt%. By the dynamic thermal performance test, it was found that the maximum buffering levels of Nylon fabrics coated with hexadecane, octadecane, and eicosane microcapsules were about $-2.4/+2.9^{\circ}C,\;-3.6/+3.6^{\circ}C\;and\;-4.0/+4.7^{\circ}C$, respectively.

An Experimental Study about the Measurement of the Thermal Properties of Phase Change Materials using T-history method (T-history 방법에 의한 잠열재의 열물성치 측정에 대한 실험적 연구)

  • Kang, Dong-Hoon;Peck, Jong-Hyeon;Park, Seung-Sang;Seo, Tae-Bum
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.226-231
    • /
    • 2001
  • The purpose of this paper is to propose the experimental method of thermal properties of Phase Change Materials (PCMs) by using T-history method. As far, in order to measure the heat of fusion and specific heat of PCMs, conventional thermal analysis methods such as DSC and DTA have been used. Because these methods test very small samples, thermal properties of samples are usually different from those of materials consisting of several components. For these reasons, T-history method, the simple measurement method of the heat of fusion and specific heat of PCMs have been performed. In this paper, we investigated the thermal properties of low temperature PCMs(below $0^{\circ}C$) under the charging process by using T-history method. The results are compared to those of DSC method. The T-history method will be useful for selection of the best PCM from lots of candidates and development of new PCMs.

  • PDF