• Title/Summary/Keyword: PCBM-$C_{61}$

Search Result 51, Processing Time 0.03 seconds

Electrical and optical characterizations of OSCs based on polymer/fullerene BHJ structures with LiF inter-layer (Polymer/fullerene/LiF inter-layer BHJ 유기태양전지의 광학 및 전기적 특성에 대한 연구)

  • Song, Yoon-Seog;Kim, Seung-Ju;Ryu, S.O.
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.1
    • /
    • pp.27-32
    • /
    • 2011
  • In this study, we have investigated the power conversion efficiency of organic solar cells utilizing conjugated polymer/fullerene bulk-hetero junction(BHJ) device structures. We have fabricated poly(3-hexylthiophene)(P3HT), poly[2methoxy-5-(3',7'-dimethyloctyl-oxy)-1-4-phenylenevinylene] as an electron donor, [6,6]-phenyl $C_{61}$ butyric acid methylester(PCBM-$C_{61}$)as an electron acceptor, and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS) used as a hole injection layer(HIL), after fabricated active layer, between active layer and metal cathode(Al) deposited LiF interlayer(5 nm). The properties of fabricated organic solar cell(OSC) devices have been analyzed as a function of different thickness. The electrical characteristics of the fabricated devices were investigated by means J-V, fill factor(FF) and power conversion efficiency(PCE). We observed the highest PCEs of 0.628%(MDMO-PPV:PCBM-$C_{61}$) and 2.3%(P3HT:PCBM-$C_{61}$) with LiF inter-layer at the highest thick active layer, which is 1.3times better than the device without LiF inter-layer.

P3HT:PCBM-based on Polymer Photovoltaic Cells with PEDOT:PSS-pentacene as a Hole Conducting Layer

  • Kim, Hyun-Soo;Hwang, Jong-Won;Park, Su-Jin;Chae, Hyun-Hee;Choe, Young-Son
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.313-313
    • /
    • 2010
  • The performance of polymer photovoltaic cells based on blends of poly(3-hexylyhiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) is strongly influenced by blend composition and thickness. Polymer photovoltaic cells based on bulk-heterojunction have been fabricated with a structure of ITO/poly(3, 4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS)-pentacene/poly (3-hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM)/Al. We have prepared PEDOT:PSS by dissolving pentacene in N-methylpyrrolidine (NMP) and mixing with PEDOT:PSS. Pentacene was added a maximum concentration of approximately 5.5mg to the PEDOT:PSS solution and sonicated for 10 min. Active layer (P3HT:PCBM) (1:1) was strongly influenced by PEDOT:PSS-pentacene. We have investigated the performance of photovoltaic device with different concentration of P3HT:PCBM (1:1) 2.0wt%, 2.2wt%, 2.4wt% and 2.6wt%, respectively. The photocurrent and power conversion efficiency (PCE) showed a maximum between 2.0wt% and 2.2wt% concentration of P3HT:PCBM. This implied that both morphology and electron transport properties of the layer influenced the performance of the present photovoltaic cells. As the concentration of P3HT:PCBM blends as an active layer was increased, the power conversion efficiency was decreased. P3HT:PCBM layer and PEDOT:PSS-pentacene layer were characterized by work function, UV-visible absorption, atomic force microscopy (AFM), X-ray diffraction (XRD) and scanning electron microscope (SEM).

  • PDF

Theoretical and quantitative structural relationships of the electrochemical properties of Cis-unsaturated thiocrown ethers and n-type material bulk-heterojunction polymer solar cells as supramolecular complexes [X-UT-Y]@R (R = PCBM, p-EHO-PCBM, and p-EHO-PCBA)

  • Taherpour, Avat Arman;Biuki, Farzaneh
    • Journal of Information Display
    • /
    • v.12 no.3
    • /
    • pp.145-152
    • /
    • 2011
  • Since the discovery of fullerenes as a class of nanostructure compounds, many potential applications have been suggested for their unusual structures and properties. The isolated pentagon rule (IPR) states that all pentagonal carbon rings are isolated in the most stable fullerene. Fullerenes $C_n$ are a class of spherical carbon allotrope group with unique properties. Electron transfer between fullerenes and other molecules is thought to involve the transfer of electrons between the molecules surrounding the fullerene cage. One class of electron transfer molecules is the methanofullerene derivatives ([6,6]-phenyl $C_{61}$-butyric acid methyl ester (PCBM), 4-(2-ethylhexyloxy)-[6,6]-phenyl $C_{61}$-butyric acid methyl ester (p-EHO-PCBM), and 4-(2-ethylhexyloxy)-[6,6]-phenyl $C_{61}$-butyric acid (p-EHO-PCBA), 10-12). It has been determined that $C_{60}$ does not obey IPR. Supramolecular complexes 1-9 and 10-12 are shown to possess a previously unreported host.guest interaction for electron transfer processes. The unsaturated, cis-geometry, thiocrown ethers, (1-9) (described as [X-UT-Y], where X and Y indicate the numbers of carbon and sulfur atoms, respectively), are a group of crown ethers that display interesting physiochemical properties in the light of their conformational restriction compared with a corresponding saturated system, as well as the sizes of their cavities. Topological indices have been successfully used to construct mathematical methods that relate structural data to various chemical and physical properties. To establish a good relationship between the structures of 1-9 with 10-12, a new index is introduced, ${\mu}_{cs}$. This index is the ratio of the sum of the number of carbon atoms ($n_c$) and the number of sulfur atoms ($n_s$) to the product of these two numbers for 1-9. In this study, the relationships between this index and oxidation potential ($^{ox}E_1$) of 1-9, as well as the first to third free energies of electron transfer (${\Delta}G_{et(n)}$, for n = 1-3, which is given by the Rehm-Weller equation) between 1-9 and PCBM, p-EHO-PCBM, and p-EHO-PCBA (10-12) as [X-UT-Y]@R(where R is the adduct PCBM, p-EHO-PCBM, and p-EHO-PCBA group) (13-15) supramolecular complexes are presented and investigated.

The Changes of Short Circuit Current Density according to the Post-annealing Temperature of Organic Materials in the Hybrid Photovoltaics (하이브리드 태양전지 제작에 있어서 유기물의 후열처리 온도에 따른 단락전류밀도의 변화)

  • Gwon, Dong-Oh;Shin, Min Jeong;Ahn, Hyung Soo;Yi, Sam Nyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.81-85
    • /
    • 2015
  • The organic/inorganic hybrid photovoltaic devices have been studied using Poly(3-hexylthiophene-2,5-diyl) (P3HT) : [6, 6]-Phenyl C61 butyric acid methyl ester (PCBM) and GaN. We traced the effect of short circuit current density with different annealing method under the various concentration and ratio of P3HT:PCBM. During the pre-annealing course, the heat treatments were performed each time at low temperature after the organic layer coated and the samples were heated at high temperature through one or two steps under the post-annealing process. It revealed that the samples with post-annealing process had higher values of short circuit current density than the other samples upon pre-annealing. And the interesting high short circuit current density features were observed at 1:1 mixing ratio and 1wt% of P3HT:PCBM.

Nanostructure and Thermal Effects Dependent on the Film Thickness in Poly(3-hexylthiophene):Phenyl-C61-butyric Acid Methyl Ester(P3HT:PCBM) Films Fabricated by 1,2-Dichlorobenzene Solvent for Organic Photovoltaics (1,2-Dichlorobenzene Solvent를 이용한 고분자 유기태양전지에서 박막 두께에 따른 나노 구조와 열처리 효과)

  • Lee, Hyun Hwi;Kim, Hyo Jung
    • Textile Coloration and Finishing
    • /
    • v.26 no.4
    • /
    • pp.347-352
    • /
    • 2014
  • Film thickness dependent nanostructure evolution by a post annealing was investigated in poly (3-hexylthiophene):phenyl-C61-butyric acid methyl ester(P3HT:PCBM) films for organic solar cells which were fabricated by dichlorobenzene(DCB) solvent. In case of a 70nm thin film, the thermal annealing process affected to slight increment of the P3HT crystals in the surface region. On the other hand, large number of small sized P3HT crystals near the surface region was formed in the 200nm thick film. The solar cell devices showed the 3% power conversion efficiency(PCE) in 1:0.65 and 1:1 ratio(by weight) of P3HT and PCBM in 70nm and 200nm thickness conditions, respectively. Despite to the similar PCE, the short circuit current Jsc was different in 70nm and 200nm devices, which was related to the different nanostructure of P3HT:PCBM after thermal annealing.

Extraction of electrical parameters as a function of post-annealing in organic solar cells (유기 태양전지의 후열처리온도에 따른 전기적 Parameter들의 추출)

  • Kim, Dong-Young;Kim, Ji-Hwan;Lee, Hye-Jee;Kim, Hae-Jin;Sohn, Sun-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.460-461
    • /
    • 2009
  • We studied the effects of post-annealing treatment on poly(3-hexylthiophene)(P3HT, donor):[6,6]-phenyl $C_{61}$ butyric acid methyl ester(PCBM, acceptor) blend film as an active layer in the organic solar cells(OSCs). For the formation of the active layer, 3 wt.% P3HT:PCBM solution in chlorobenzene were deposited by spin-coating method. In order to optimize the performance of OSCs, the P3HT crystallization and the redistribution of PCBM cluster at P3HT:PCBM composition as a function of post-annealing condition from room temperature to $200^{\circ}C$ were measured by the Hall effect and the UV-vis Spectrophotometer. We thought that the improved efficiency in the OSCs with post-annealing treatment at $150^{\circ}C$ can be explained by the efficient separation or collection of the photogenerated excitons at donor-acceptor interface by P3HT crystallization.

  • PDF

The Post Annealing Effect of Organic Thin Film Solar Cells with P3HT:PCBM Active Layer (P3HT:PCBM 활성층을 갖는 유기 박막태양전지의 후속 열처리 효과)

  • Jang, Seong-Kyu;Gong, Su-Cheol;Chang, Ho-Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.2
    • /
    • pp.63-67
    • /
    • 2010
  • The organic solar cells with Glass/ITO/PEDOT:PSS/P3HT:PCBM/Al structure were fabricated using regioregular poly (3-hexylthiophene) (P3HT) polymer:(6,6)- phenyl $C_{61}$-butyric acid methyl ester (PCBM) fullerene polymer as the bulk hetero-junction layer. The P3HT and PCBM as the electron donor and acceptor materials were spin casted on the indium tin oxide (ITO) coated glass substrates. The optimum mixing concentration ratio of photovoltaic layer was found to be P3HT:PCBM = 4:4 in wt%, indicating that the short circuit current density ($J_{SC}$), open circuit voltage ($V_{OC}$), fill factor (FF) and power conversion efficiency (PCE) values were about 4.7 $mA/cm^2$, 0.48 V, 43.1% and 0.97%, respectively. To investigate the effects of the post annealing treatment, as prepared organic solar cells were post annealed at the treatment time range from 5min to 20min at $150^{\circ}C$. $J_{SC}$ and $V_{OC}$ increased with increasing the post annealing time from 5min to 15min, which may be originated from the improvement of the light absorption coefficient of P3HT and improved ohmic contact between photo voltaic layer and Al electrode. The maximum $J_{SC},\;V_{OC}$, FF and PCE values of organic solar cell, which was post annealed for 15min at $150^{\circ}C$, were found to be about 7.8 $mA/cm^2$, 0.55 V, 47% and 2.0%, respectively.

Ultra-Low Powered CNT Synaptic Transistor Utilizing Double PI:PCBM Dielectric Layers (더블 PI:PCBM 유전체 층 기반의 초 저전력 CNT 시냅틱 트랜지스터)

  • Kim, Yonghun;Cho, Byungjin
    • Korean Journal of Materials Research
    • /
    • v.27 no.11
    • /
    • pp.590-596
    • /
    • 2017
  • We demonstrated a CNT synaptic transistor by integrating 6,6-phenyl-C61 butyric acid methyl ester(PCBM) molecules as charge storage molecules in a polyimide(PI) dielectric layer with carbon nanotubes(CNTs) for the transistor channel. Specifically, we fabricated and compared three different kinds of CNT-based synaptic transistors: a control device with $Al_2O_3/PI$, a single PCBM device with $Al_2O_3/PI:PCBM$(0.1 wt%), and a double PCBM device with $Al_2O_3/PI:PCBM$(0.1 wt%)/PI:PCBM(0.05 wt%). Statistically, essential device parameters such as Off and On currents, On/Off ratio, device yield, and long-term retention stability for the three kinds of transistor devices were extracted and compared. Notably, the double PCBM device exhibited the most excellent memory transistor behavior. Pulse response properties with postsynaptic dynamic current were also evaluated. Among all of the testing devices, double PCBM device consumed such low power for stand-by and its peak current ratio was so large that the postsynaptic current was also reliably and repeatedly generated. Postsynaptic hole currents through the CNT channel can be generated by electrons trapped in the PCBM molecules and last for a relatively short time(~ hundreds of msec). Under one certain testing configuration, the electrons trapped in the PCBM can also be preserved in a nonvolatile manner for a long-term period. Its integrated platform with extremely low stand-by power should pave a promising road toward next-generation neuromorphic systems, which would emulate the brain power of 20 W.

Effect of Organic Solvent-Modification on the Electrical Characteristics of the PCBM Thin-Film Transistors on Plastic substrate (플라스틱 기판상에 제작된 PCBM 박막 트랜지스터의 전기적 특성에 대한 유기 용매 최적화의 효과에 대한 연구)

  • Hyung, Gun-Woo;Lee, Ho-Won;Koo, Ja-Ryong;Lee, Seok-Jae;Kim, Young-Kwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.199-204
    • /
    • 2012
  • Organic thin-film transistors (OTFTs) have received considerable attention because their potential applications for nano-scale thin-film structures have been widely researched for large-scale integration industries, such as semiconductors and displays. However, research in developing n-type materials and devices has been relatively shortage than developing p-type materials. Therefore, we report on the fabrication of top-contact [6,6]-phenyl-C61-butyricacidmethylester (PCBM) TFTs by using three different solvent, o-dichlorobenzene, toluene and chloroform. An appropriate choice of solvent shows that the electrical characteristics of PCBM TFTs can be improved. Moreover, our PCBM TFTs with the cross-linked Poly(4-vinylphenol) dielectric layer exhibits the most pronounced improvements in terms of the field-effect mobility (${\sim}0.034cm^2/Vs$) and the on/off current ratio (${\sim}1.3{\times}10^5$) for our results. From these results, it can be concluded that solvent-modification of an organic semiconductor in PCBM TFTs is useful and can be extended to further investigations on the PCBM TFTs having polymeric gate dielectrics. It is expected that process optimizations using solution-processing of organic semiconductor materials will allow the development of the n-type organic TFTs for low-cost electronics and various electronic applications.

Study of the Energy Level Alignment of Organic Materials' Planar Junction Prepared by Electrospray Vacuum Deposition

  • Kim, Ji-Hun;Hong, Jong-Am;Seo, Jae-Won;Gwon, Dae-Gyeon;Maeng, Min-Jae;Park, Yong-Seop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.235-235
    • /
    • 2012
  • We investigated the energy levels of valence region at the planar junction of poly (3-hexylthiophene) (P3HT) and C61-butyric acid methylester (PCBM) using ultraviolet photoemission spectroscopy (UPS) with ultra high vacuum. These are the most widely used materials for bulk heterojunction (BHJ) organic solar cells due to their high efficiency. In order to make the planar junction, we carried out the electrospray vacuum deposition (EVD) of PCBM onto spin-coated P3HT in high vacuum conditions (${\sim}10^{-5}-10^{-6}$). The planar junction interface exhibited 0.71 eV for the offset between P3HT HOMO and PCBM LUMO, which is different from the gap (0.85 eV) of individual values and is closer to the open circuit voltage of solar cells fabricated with the same material combination.

  • PDF