Browse > Article
http://dx.doi.org/10.12925/jkocs.2012.29.2.4

Effect of Organic Solvent-Modification on the Electrical Characteristics of the PCBM Thin-Film Transistors on Plastic substrate  

Hyung, Gun-Woo (Dept. of Materials Science and Engineering, Hongik University)
Lee, Ho-Won (Dept. of Information Display, Hongik University)
Koo, Ja-Ryong (Dept. of Information Display, Hongik University)
Lee, Seok-Jae (Dept. of Information Display, Hongik University)
Kim, Young-Kwan (Dept. of Information Display, Hongik University)
Publication Information
Journal of the Korean Applied Science and Technology / v.29, no.2, 2012 , pp. 199-204 More about this Journal
Abstract
Organic thin-film transistors (OTFTs) have received considerable attention because their potential applications for nano-scale thin-film structures have been widely researched for large-scale integration industries, such as semiconductors and displays. However, research in developing n-type materials and devices has been relatively shortage than developing p-type materials. Therefore, we report on the fabrication of top-contact [6,6]-phenyl-C61-butyricacidmethylester (PCBM) TFTs by using three different solvent, o-dichlorobenzene, toluene and chloroform. An appropriate choice of solvent shows that the electrical characteristics of PCBM TFTs can be improved. Moreover, our PCBM TFTs with the cross-linked Poly(4-vinylphenol) dielectric layer exhibits the most pronounced improvements in terms of the field-effect mobility (${\sim}0.034cm^2/Vs$) and the on/off current ratio (${\sim}1.3{\times}10^5$) for our results. From these results, it can be concluded that solvent-modification of an organic semiconductor in PCBM TFTs is useful and can be extended to further investigations on the PCBM TFTs having polymeric gate dielectrics. It is expected that process optimizations using solution-processing of organic semiconductor materials will allow the development of the n-type organic TFTs for low-cost electronics and various electronic applications.
Keywords
PCBM; solvent; thin-film transistors; organic gate dielectric layer; surface roughness;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Dodabalapur, Z. Bao, and A. Makhija, "Organic Smart Pixels", Appl. Phys. Lett., 73, 142 (1998).   DOI
2 Y. Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, "Pentacene-based Organic Thin-film Transistors", IEEE Trans. Electron Devices, 44, 1325 (1997).   DOI
3 D. J. Gundlach, C. C. Kuo, and T. N. Jackson, "Organic Thin Film Transistors with Field Effect Mobility", 57th Annual Device Research Conference Digest, 164 (1999).
4 S. Hoshino, M. Yoshida, S. Uemura, T. Kodzasa, N. Takada, T. Kamata, and K. Yase, "Influence of Moisture on Device Characteristics of Polythiophene-based Field-effect Transistors", J. Appl. Phys., 95, 5088 (2004).   DOI
5 V. Liberman, V. Malba, and A. F. Bernhardt, "Integration of Vapor Deposited Polyimide into a Multichip Module Packaging Process", IEEE Trans. On Components, Packing, and Manufacturing. Technology. Part B, 20, 13 (1997).
6 M. Halik, H. Klauk, M. Brunnbauer, and F. Stellacci, "Low-voltage Organic Transistors with an Amorphous Molecular Gate Dielectric", Nature, 431, 963 (2004).   DOI
7 T. Jung, A. Dodabalapur, R. Wenz, and S. Mohapatra, "Moisture Induced Surface Polarization in a Poly(4-vinyl phenol) Dielectric in an Organic Thin-film Transistor," Appl. Phys. Lett., 87, 182 (2005).
8 H. Yanagisita, D. Kitamoto, K. Haraya, T. Nakane, T. Tsuchiya, and N. Koura, "Preparation and Pervaporation Performance of Polyimide Composite Membrane by Vapor Deposition and Polymerization (VDP)", J. Membrane Science, 136, 121 (1997).   DOI
9 C. A. Pryde, "IR Studies of Polyimide. І. Effects of Chemical and Physical Changes During Cure", J . Polym. Sci. A., 27, 711 (1989).   DOI
10 M. L. Chabinyc and A. Salleo "Materials Requirements and Fabrication of Active Matrix Array of Organic Thin-Film Transistors for Dispalys", Chem. Mater. 16, 4509 (2004).   DOI
11 S. W. Pyo, D. H. Lee, J. R. Koo, J. H. Kim, J. H. Shim, and Y. K. Kim, "Organic Thin-Film Transistors Based on Vapor-Deposition Polymerized Gate Insulators", Jpn. J. Appl. Phys., 44, 652 (2005).   DOI
12 M. Yoshida, S. Uemura, T. Kodzasa, T. Kamata, M. Matsuzawa, and T. Kawai, "Surface Potential Control of an Insulator Layer for the High Performance Organic FET", Synth. Met. 137, 967 (2003).   DOI
13 S. Y. Yang, K. w. Shin, and C. E. Park, "The Effect of Gate Dielectric Surface Energy on Pentacene Morphology and OFET Characteristics", Adv. Funct. Mater. 15, 1806 (2005)   DOI
14 S. H. Han, J. H. Kim, Y. R. Son, K. J. Lee, W. S. Kim, G. S. Cho, J. Jang, S. H. Lee, and D. J. Choo, "Solvent Effect of the Passivation Layer on Performance of an Organic Thin-film Transistor", Electrochem. Solid State Lett., 10, J68 (2007).   DOI
15 J. H. Lee, S. H. Kim, J. B. Koo, J. W. Lim, S. C. Lim, G. H. Kim, S. J. Yun, K. S. Suh, C. H. Ku, and J. Jang, "Isolation Effect on Organic Thin Film Transistors for Low Hysteresis Characteristics," J . Korean Phys.Soc., 49, 1148 (2006).