Browse > Article
http://dx.doi.org/10.1080/15980316.2011.593911

Theoretical and quantitative structural relationships of the electrochemical properties of Cis-unsaturated thiocrown ethers and n-type material bulk-heterojunction polymer solar cells as supramolecular complexes [X-UT-Y]@R (R = PCBM, p-EHO-PCBM, and p-EHO-PCBA)  

Taherpour, Avat Arman (Chemistry Department, Faculty of Science, Islamic Azad University)
Biuki, Farzaneh (Chemistry Department, Faculty of Science, Islamic Azad University)
Publication Information
Abstract
Since the discovery of fullerenes as a class of nanostructure compounds, many potential applications have been suggested for their unusual structures and properties. The isolated pentagon rule (IPR) states that all pentagonal carbon rings are isolated in the most stable fullerene. Fullerenes $C_n$ are a class of spherical carbon allotrope group with unique properties. Electron transfer between fullerenes and other molecules is thought to involve the transfer of electrons between the molecules surrounding the fullerene cage. One class of electron transfer molecules is the methanofullerene derivatives ([6,6]-phenyl $C_{61}$-butyric acid methyl ester (PCBM), 4-(2-ethylhexyloxy)-[6,6]-phenyl $C_{61}$-butyric acid methyl ester (p-EHO-PCBM), and 4-(2-ethylhexyloxy)-[6,6]-phenyl $C_{61}$-butyric acid (p-EHO-PCBA), 10-12). It has been determined that $C_{60}$ does not obey IPR. Supramolecular complexes 1-9 and 10-12 are shown to possess a previously unreported host.guest interaction for electron transfer processes. The unsaturated, cis-geometry, thiocrown ethers, (1-9) (described as [X-UT-Y], where X and Y indicate the numbers of carbon and sulfur atoms, respectively), are a group of crown ethers that display interesting physiochemical properties in the light of their conformational restriction compared with a corresponding saturated system, as well as the sizes of their cavities. Topological indices have been successfully used to construct mathematical methods that relate structural data to various chemical and physical properties. To establish a good relationship between the structures of 1-9 with 10-12, a new index is introduced, ${\mu}_{cs}$. This index is the ratio of the sum of the number of carbon atoms ($n_c$) and the number of sulfur atoms ($n_s$) to the product of these two numbers for 1-9. In this study, the relationships between this index and oxidation potential ($^{ox}E_1$) of 1-9, as well as the first to third free energies of electron transfer (${\Delta}G_{et(n)}$, for n = 1-3, which is given by the Rehm-Weller equation) between 1-9 and PCBM, p-EHO-PCBM, and p-EHO-PCBA (10-12) as [X-UT-Y]@R(where R is the adduct PCBM, p-EHO-PCBM, and p-EHO-PCBA group) (13-15) supramolecular complexes are presented and investigated.
Keywords
methanofullerenes; Rehm-Weller equation; electron transfer process; unsaturated thiocrown ethers; molecular modeling;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L.B. Kier and L.H. Hall, Molecular Connectivity in Structure-Activity (Research Studies Press, Letchwork, 1986).
2 M. Barysz, D. Plavsic and N. Trinajstic, Match 19, 89 (1986).
3 J.G. Bundy, A.W.J. Morriss, D.G. Durham, C.D. Campbell and G.I. Paton, Chemosphere 42, 885 (2001) (and the literature cited there in).   DOI   ScienceOn
4 A. Li and S.H. Yalkowsky, Ind. Eng. Chem. Res. 37, 4470 (1998).   DOI   ScienceOn
5 S.D. Bolboaca and L. Jantschi, Int. J. Mol. Sci. 8, 335 (2007).   DOI
6 M. Randic, D. Plavsic and N. Lers, J. Chem. Inf. Cmput. Sci. 41, 657 (2001).   DOI
7 M. Randic and S.C. Basak, J. Chem. Inf. Cmput. Sci. 41, 614 (2001).   DOI
8 Z. Slanina, M.-C. Chao, S.-L. Lee and I. Gutman, J. Serb. Chem. Soc. 62 (3) 211 (1997).
9 N.S. Sariciftci, L. Smilowitz, A.J. Heeger and F. Wudl, Science 258, 1474 (1992).   DOI   ScienceOn
10 C.J. Brebec, V. Dyakonov, J. Parisi and N.S. Sariciftci, Organic Photovoltaics, Concepts and Realizations (Springer, Berlin, 2003).
11 Q. Xie, E. Perez-Codero and L. Echegoyen, J. Am. Chem. Soc. 114, 3978 (1992).   DOI
12 C. Hansch, A. Leo and D. Hoekman, Exploring QSAR: Hydrophobic, Electronic, Steric Constants (ACS, Washington, DC, 1995).
13 A.A. Taherpour, Fullerenes Nanotubes Carbon Nanostruct. 17 (2), 171 (2009).   DOI   ScienceOn
14 Quin-Nan Hu and Yi-Zeng Liang, Internet Electron. J. Mol. Des. 3 (6), 335 (2004).
15 L. Yu, L. Gao, J.C. Hummelen, F. Wudl and A.J. Heeger, Science 258, 1474 (1992).   DOI   ScienceOn
16 F.B. Kooistra, J. Knol, F. Kanstenberg, L.M. Popescu,W.J.H. Verhees, J.M. Kroon and J.C. Hummelen, Org. Lett. 9, 551 (2007).   DOI   ScienceOn
17 C. Jehoulet, Y.O. Obeng, Y.T. Kim, F. Zhou and A.J. Bard, J. Am. Chem. Soc. 114, 4237 (1992).   DOI
18 P. Janda, T. Krieg and L. Dunsch, Adv. Mater. 17, 1434 (1998).
19 A. Touzik, H. Hermann, P. Janda, L. Dunsch and K.Wetzig, Europhys. Lett. 60, 411 (2002).   DOI   ScienceOn
20 L.B. Kier and L.H. Hall, Molecular Connectivity in Chemistry and Drug Research (Academic Press, New York, 1976).
21 M. Randic, J. Math. Chem. 7, 155 (1991).   DOI   ScienceOn
22 A. Balaban, Chem. Phys. Lett. 89, 399 (1982).   DOI   ScienceOn
23 D. Rehm and A. Weller, Isr. J. Chem. 8, 259 (1970).   DOI
24 K. Kobayashi, S. Nagase, M. Yoshida and E. Osawa, J. Am. Chem. Soc. 119, 12693 (1997).   DOI   ScienceOn
25 L.B. Kier and L.H. Hall, Molecular Structure Description: The Electrotopological State (Academic Press, New York, 1999).
26 H. Wiener, J. Am. Chem. Soc. 69, 17 (1947).   DOI
27 E. Estrada, Chem. Phys. Lett. 336, 284 (2000).
28 Z. Slanina, K. Ishimura, K. Kobayashi and S. Nagase, Chem. Phys. Lett. 384, 7782 (2004).
29 C.Yang, J.Y. Kim, S. Cho, J.K. Lee, A.J. Heeger and F.Wudl, J. Am. Chem. Soc. 130, 6444 (2008).   DOI   ScienceOn
30 S. Gunes, H. Neugebauer and N.S. Sariciftci, Chem. Rev. 107, 1324 (2007).   DOI   ScienceOn
31 B.S. Sherigara, W. Kutner, F. D'Souza, Electroanalysis 15, 753 (2003).   DOI   ScienceOn
32 D. Plavsic, S. Nikolic, N. Trinajstic and Z. Mihalic, J. Math. Chem. 12, 235 (1993).   DOI   ScienceOn
33 M. Randic, D. Mills and S.C. Basak, Int. J. Quantum Chem. 80, 1199 (2000).   DOI   ScienceOn
34 A. Sabljic and N. Trinajstic, Acta Pharm. Ugosl. 31, 189 (1981).
35 P.G. Sybold, M. May and U.A. Bagal, J. Chem. Edu. 64, 575 (1987).   DOI
36 A.A. Taherpour, Fullerenes Nanotubes Carbon Nanostruct. 15, 405 (2007).   DOI   ScienceOn
37 A.A. Taherpour, Fullerenes Nanotubes Carbon Nanostruct. 16 (2), 142 (2008).   DOI   ScienceOn
38 X. Lu, H. Nikawa, T. Nakahodo, T. Tsuchiya, M.O. Ishitsuka, Y. Maeda, T. Akasaka, M. Toki, H. Sawa, Z. Slanina, N. Mizorogi and S. Nagase, J. Am. Chem. Soc. 130 (28), 9129 (2008).   DOI   ScienceOn
39 R.E. Haufler, J. Conceicao, L.P.F. Chibante, Y. Chai, N.E. Byrne, S. Flanagan, et al., J. Phys. Chem. 94, 8634 (1990).   DOI
40 Z. Slanina, Z. Chen, P.V.R. Schleyer, F. Uhlik, X. Lu and S. Nagase, J. Phys. Chem. A. 110 (6),;231 (2006).
41 R.E. Smalley, in Fullerenes, edited by G.S. Hamond, V.J. Kuck (American Chemical Society, Washington, DC, 1992), pp. 141.
42 R.S. Ruoff, K.M. Kadish, P. Boulas, E.C.M. Chen, J. Phys. Chem. 99 (21), 8843 (1995).   DOI   ScienceOn
43 P.W. Fowler and D.E. Manolopoulos, An Atlas of Fullerenes (Clarendon Press, Oxford, 1995), Vol. 30.
44 H. Wiener, J. Am. Chem. Soc., 69, 17 (1947).   DOI
45 Y.P. Du, Y.Z. Liang, B.Y. Li and C.J. Xu, J. Chem. Inf. Cmput. Sci. 42, 1128 (2002).
46 L.B. Kier, Quant. Struc.-Act. Relat. 4, 109 (1985).   DOI
47 T. Wakahara, H. Nikawa, T. Kikuchi, T. Nakahodo, G.M. Aminur Rahman, T. Tsuchiya, Y. Maeda, T. Akasaka, K. Yoza, E. Horn, K. Yamamoto, N. Mizorogi, Z. Slanina and S. Nagase, J. Am. Chem. Soc. 128, 14228 (2006).   DOI   ScienceOn
48 K. Kobayashi, S. Nagase, M. Yoshida and E. Osawa, J. Am. Chem. Soc. 119, 12693 (1997).   DOI   ScienceOn
49 Z. Slanina, K. Kobayashi and S. Nagase, Chem. Phys. Lett. 372, 810 (2003).   DOI
50 A. Hirsch and M. Brettreich, Fullerenes, Chemistry and Reactions (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2005).
51 C.S.Yannoni, M. Hoinkis, M.S. DeVries, D.S. Bethune, J.R. Salem, M.S. Crowder and R.D. Johnson, Science 256 (5060), 1191 (1992).   DOI
52 H.W. Kroto, Nature 329, 529 (1987).   DOI   ScienceOn
53 M. Randic, J. Am. Chem. Soc. 97, 6609 (1975).   DOI
54 H. Hosoya, Bull. Chem. Soc. Jpn. 44, 2332 (1971).   DOI
55 M. Randic, Acta Chim. Slov. 45, 239 (1998).
56 H. Zettergren, M. Alcamí and F. Martin, ChemPhysChem 9 (6), 861 (2008).   DOI   ScienceOn
57 H. Kato, A. Taninaka, T. Sugai and H. Shinohara, J. Am. Chem. Soc. 125 (26), 782 (2003).
58 J.H. Weaver, Y. Chai, G.H. Kroll, C. Jin, T.R. Ohno, R.E. Haufler, T. Guo, J.M. Alford, J. Conceicao, L.P.F. Chibante, A. Jain, G. Palmer and R.E. Smalley, Chem. Phys. Lett. 190 (5), 460 (1992).   DOI   ScienceOn
59 G. Rücker and C. Rücker, J. Chem. Inf. Cmput. Sci. 39, 788 (1999).   DOI
60 S. Nagase and K. Kobayashi, Chem. Phys. Lett. 231 (2-3), 319 (1994).   DOI
61 T.A. Murphy, T. Pawlik, A.Weidinger,M. Hohne, R. Alcala and J.M. Spath, Phys. Rev. Lett. 77, 1075 (1996).   DOI
62 Z. Slanina, K. Kobayashi and S. Nagase, J. Chem. Phys. 120, 3397 (2004).   DOI   ScienceOn
63 D. Parker, Macrocycle Synthesis: A Practical Approach (Oxford University Press, New York, 1996).
64 C.J. Pedersen, J. Org. Chem. 36, 254 (1971).   DOI
65 S.G. Murray and F.R. Hartley, Chem. Rev. 81, 365 (1981).   DOI
66 P.J. Hansen and P. Jurs, J. Chem. Educ. 65, 574 (1988) (and the literature cited therein).   DOI
67 S. Stevenson, H.C. Dorn, P.M. Burbank, K. Harich, J. Haynes, C.H. Kiang, J.R. Salem, M.S. de Vries, P.H.M. van Loosdrecht, R.D. Johnson, C.S. Yannoni and D.S. Bethune, Anal. Chem. 66 (17), 2675 (1994).   DOI   ScienceOn
68 H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl and R.E. Smalley, Nature 318, 162 (1985)   DOI
69 J. Nakayama, A. Kaneko, Y. Sugihara and A. Ishii, Tetrahedron 55, 10057 (1999).   DOI   ScienceOn
70 Y. Iiduka, T. Wakahara, K. Nakajima, T. Tsuchiya, T. Nakahodo, Y. Maeda, T. Akasaka, N. Mizorogi and S. Nagase, Chem. Commun. 19, 2057 (2006).
71 K.R. Hoffman, K. Delapp, H. Andrews, P. Sprinkle, M. Nickels, B. Norris, J. Lumin. 667 (1-6), 244 (1995).
72 I. Gutman and M. Randic, Chem. Phys. Lett. 47, 15 (1977).   DOI   ScienceOn
73 S.R. Cooper and S.C. Rawle, Struct. Bonding 72, 1 (1990).
74 T.J.S. Dennis, T. Kai, T. Tomiyama and H. Shinohara, Chem. Commun. 5, 619 (1998).
75 S.R. Cooper, Acc. Chem. Res. 21, 141 (1988).   DOI
76 A.J. Blake and M. Schröder, Adv. Inorg. Chem. 35, 1 (1990).
77 T. Tsuchiya, H. Kurihara, K. Sato, T.Wakahara, T. Akasaka, T. Shimizu, N. Kamigata, N. Mizorogi and S. Nagase, Chem. Commun. 34, 3585 (2006) (and the literature cited therein).
78 M.R. Anderson, H.C. Dorn and S.A. Stevenson, Carbon 38, 1663 (2000).   DOI   ScienceOn
79 J.C. Hummelen and B.W. Knight, J. Org. Chem. 60, 532 (1995).   DOI   ScienceOn
80 T. Tsuchiya, T. Shimizu and N. Kamigata, J. Am. Chem. Soc. 123, 11534 (2001) (and the literature cited therein).   DOI   ScienceOn
81 A.A. Taherpour and F. Shafiee, J. Mol. Struct. Theochem 726, 183 (2005).   DOI
82 M. Randic and M. Pompe, J. Chem. Inf. Cmput. Sci. 41, 575 (2001).   DOI