DOI QR코드

DOI QR Code

Theoretical and quantitative structural relationships of the electrochemical properties of Cis-unsaturated thiocrown ethers and n-type material bulk-heterojunction polymer solar cells as supramolecular complexes [X-UT-Y]@R (R = PCBM, p-EHO-PCBM, and p-EHO-PCBA)

  • Received : 2011.04.01
  • Accepted : 2011.05.08
  • Published : 2011.09.30

Abstract

Since the discovery of fullerenes as a class of nanostructure compounds, many potential applications have been suggested for their unusual structures and properties. The isolated pentagon rule (IPR) states that all pentagonal carbon rings are isolated in the most stable fullerene. Fullerenes $C_n$ are a class of spherical carbon allotrope group with unique properties. Electron transfer between fullerenes and other molecules is thought to involve the transfer of electrons between the molecules surrounding the fullerene cage. One class of electron transfer molecules is the methanofullerene derivatives ([6,6]-phenyl $C_{61}$-butyric acid methyl ester (PCBM), 4-(2-ethylhexyloxy)-[6,6]-phenyl $C_{61}$-butyric acid methyl ester (p-EHO-PCBM), and 4-(2-ethylhexyloxy)-[6,6]-phenyl $C_{61}$-butyric acid (p-EHO-PCBA), 10-12). It has been determined that $C_{60}$ does not obey IPR. Supramolecular complexes 1-9 and 10-12 are shown to possess a previously unreported host.guest interaction for electron transfer processes. The unsaturated, cis-geometry, thiocrown ethers, (1-9) (described as [X-UT-Y], where X and Y indicate the numbers of carbon and sulfur atoms, respectively), are a group of crown ethers that display interesting physiochemical properties in the light of their conformational restriction compared with a corresponding saturated system, as well as the sizes of their cavities. Topological indices have been successfully used to construct mathematical methods that relate structural data to various chemical and physical properties. To establish a good relationship between the structures of 1-9 with 10-12, a new index is introduced, ${\mu}_{cs}$. This index is the ratio of the sum of the number of carbon atoms ($n_c$) and the number of sulfur atoms ($n_s$) to the product of these two numbers for 1-9. In this study, the relationships between this index and oxidation potential ($^{ox}E_1$) of 1-9, as well as the first to third free energies of electron transfer (${\Delta}G_{et(n)}$, for n = 1-3, which is given by the Rehm-Weller equation) between 1-9 and PCBM, p-EHO-PCBM, and p-EHO-PCBA (10-12) as [X-UT-Y]@R(where R is the adduct PCBM, p-EHO-PCBM, and p-EHO-PCBA group) (13-15) supramolecular complexes are presented and investigated.

Keywords

References

  1. H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl and R.E. Smalley, Nature 318, 162 (1985) https://doi.org/10.1038/318162a0
  2. H.W. Kroto, Nature 329, 529 (1987). https://doi.org/10.1038/329529a0
  3. T.A. Murphy, T. Pawlik, A.Weidinger,M. Hohne, R. Alcala and J.M. Spath, Phys. Rev. Lett. 77, 1075 (1996). https://doi.org/10.1103/PhysRevLett.77.1075
  4. A. Hirsch and M. Brettreich, Fullerenes, Chemistry and Reactions (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2005).
  5. H. Zettergren, M. Alcamí and F. Martin, ChemPhysChem 9 (6), 861 (2008). https://doi.org/10.1002/cphc.200700670
  6. H. Kato, A. Taninaka, T. Sugai and H. Shinohara, J. Am. Chem. Soc. 125 (26), 782 (2003).
  7. Z. Slanina, Z. Chen, P.V.R. Schleyer, F. Uhlik, X. Lu and S. Nagase, J. Phys. Chem. A. 110 (6),;231 (2006).
  8. X. Lu, H. Nikawa, T. Nakahodo, T. Tsuchiya, M.O. Ishitsuka, Y. Maeda, T. Akasaka, M. Toki, H. Sawa, Z. Slanina, N. Mizorogi and S. Nagase, J. Am. Chem. Soc. 130 (28), 9129 (2008). https://doi.org/10.1021/ja8019577
  9. T. Wakahara, H. Nikawa, T. Kikuchi, T. Nakahodo, G.M. Aminur Rahman, T. Tsuchiya, Y. Maeda, T. Akasaka, K. Yoza, E. Horn, K. Yamamoto, N. Mizorogi, Z. Slanina and S. Nagase, J. Am. Chem. Soc. 128, 14228 (2006). https://doi.org/10.1021/ja064751y
  10. K. Kobayashi, S. Nagase, M. Yoshida and E. Osawa, J. Am. Chem. Soc. 119, 12693 (1997). https://doi.org/10.1021/ja9733088
  11. Z. Slanina, K. Kobayashi and S. Nagase, Chem. Phys. Lett. 372, 810 (2003). https://doi.org/10.1016/S0009-2614(03)00519-0
  12. Z. Slanina, K. Ishimura, K. Kobayashi and S. Nagase, Chem. Phys. Lett. 384, 7782 (2004).
  13. B.S. Sherigara, W. Kutner, F. D'Souza, Electroanalysis 15, 753 (2003). https://doi.org/10.1002/elan.200390094
  14. R.E. Haufler, J. Conceicao, L.P.F. Chibante, Y. Chai, N.E. Byrne, S. Flanagan, et al., J. Phys. Chem. 94, 8634 (1990). https://doi.org/10.1021/j100387a005
  15. Q. Xie, E. Perez-Codero and L. Echegoyen, J. Am. Chem. Soc. 114, 3978 (1992). https://doi.org/10.1021/ja00036a056
  16. C. Jehoulet, Y.O. Obeng, Y.T. Kim, F. Zhou and A.J. Bard, J. Am. Chem. Soc. 114, 4237 (1992). https://doi.org/10.1021/ja00037a030
  17. P. Janda, T. Krieg and L. Dunsch, Adv. Mater. 17, 1434 (1998).
  18. A. Touzik, H. Hermann, P. Janda, L. Dunsch and K.Wetzig, Europhys. Lett. 60, 411 (2002). https://doi.org/10.1209/epl/i2002-00279-7
  19. C.Yang, J.Y. Kim, S. Cho, J.K. Lee, A.J. Heeger and F.Wudl, J. Am. Chem. Soc. 130, 6444 (2008). https://doi.org/10.1021/ja710621j
  20. S. Gunes, H. Neugebauer and N.S. Sariciftci, Chem. Rev. 107, 1324 (2007). https://doi.org/10.1021/cr050149z
  21. N.S. Sariciftci, L. Smilowitz, A.J. Heeger and F. Wudl, Science 258, 1474 (1992). https://doi.org/10.1126/science.258.5087.1474
  22. C.J. Brebec, V. Dyakonov, J. Parisi and N.S. Sariciftci, Organic Photovoltaics, Concepts and Realizations (Springer, Berlin, 2003).
  23. L. Yu, L. Gao, J.C. Hummelen, F. Wudl and A.J. Heeger, Science 258, 1474 (1992). https://doi.org/10.1126/science.258.5087.1474
  24. F.B. Kooistra, J. Knol, F. Kanstenberg, L.M. Popescu,W.J.H. Verhees, J.M. Kroon and J.C. Hummelen, Org. Lett. 9, 551 (2007). https://doi.org/10.1021/ol062666p
  25. J.C. Hummelen and B.W. Knight, J. Org. Chem. 60, 532 (1995). https://doi.org/10.1021/jo00108a012
  26. T. Tsuchiya, T. Shimizu and N. Kamigata, J. Am. Chem. Soc. 123, 11534 (2001) (and the literature cited therein). https://doi.org/10.1021/ja0102742
  27. T. Tsuchiya, H. Kurihara, K. Sato, T.Wakahara, T. Akasaka, T. Shimizu, N. Kamigata, N. Mizorogi and S. Nagase, Chem. Commun. 34, 3585 (2006) (and the literature cited therein).
  28. M.R. Anderson, H.C. Dorn and S.A. Stevenson, Carbon 38, 1663 (2000). https://doi.org/10.1016/S0008-6223(00)00089-0
  29. S.R. Cooper, Acc. Chem. Res. 21, 141 (1988). https://doi.org/10.1021/ar00148a002
  30. A.J. Blake and M. Schröder, Adv. Inorg. Chem. 35, 1 (1990).
  31. S.R. Cooper and S.C. Rawle, Struct. Bonding 72, 1 (1990).
  32. D. Parker, Macrocycle Synthesis: A Practical Approach (Oxford University Press, New York, 1996).
  33. C.J. Pedersen, J. Org. Chem. 36, 254 (1971). https://doi.org/10.1021/jo00801a003
  34. S.G. Murray and F.R. Hartley, Chem. Rev. 81, 365 (1981). https://doi.org/10.1021/cr00044a003
  35. J. Nakayama, A. Kaneko, Y. Sugihara and A. Ishii, Tetrahedron 55, 10057 (1999). https://doi.org/10.1016/S0040-4020(99)00540-2
  36. J.H. Weaver, Y. Chai, G.H. Kroll, C. Jin, T.R. Ohno, R.E. Haufler, T. Guo, J.M. Alford, J. Conceicao, L.P.F. Chibante, A. Jain, G. Palmer and R.E. Smalley, Chem. Phys. Lett. 190 (5), 460 (1992). https://doi.org/10.1016/0009-2614(92)85173-8
  37. R.E. Smalley, in Fullerenes, edited by G.S. Hamond, V.J. Kuck (American Chemical Society, Washington, DC, 1992), pp. 141.
  38. C.S.Yannoni, M. Hoinkis, M.S. DeVries, D.S. Bethune, J.R. Salem, M.S. Crowder and R.D. Johnson, Science 256 (5060), 1191 (1992). https://doi.org/10.1126/science.256.5060.1191
  39. R.S. Ruoff, K.M. Kadish, P. Boulas, E.C.M. Chen, J. Phys. Chem. 99 (21), 8843 (1995). https://doi.org/10.1021/j100021a060
  40. P.W. Fowler and D.E. Manolopoulos, An Atlas of Fullerenes (Clarendon Press, Oxford, 1995), Vol. 30.
  41. K.R. Hoffman, K. Delapp, H. Andrews, P. Sprinkle, M. Nickels, B. Norris, J. Lumin. 667 (1-6), 244 (1995).
  42. T.J.S. Dennis, T. Kai, T. Tomiyama and H. Shinohara, Chem. Commun. 5, 619 (1998).
  43. S. Stevenson, H.C. Dorn, P.M. Burbank, K. Harich, J. Haynes, C.H. Kiang, J.R. Salem, M.S. de Vries, P.H.M. van Loosdrecht, R.D. Johnson, C.S. Yannoni and D.S. Bethune, Anal. Chem. 66 (17), 2675 (1994). https://doi.org/10.1021/ac00089a013
  44. Y. Iiduka, T. Wakahara, K. Nakajima, T. Tsuchiya, T. Nakahodo, Y. Maeda, T. Akasaka, N. Mizorogi and S. Nagase, Chem. Commun. 19, 2057 (2006).
  45. Z. Slanina, K. Kobayashi and S. Nagase, J. Chem. Phys. 120, 3397 (2004). https://doi.org/10.1063/1.1641004
  46. S. Nagase and K. Kobayashi, Chem. Phys. Lett. 231 (2-3), 319 (1994). https://doi.org/10.1016/0009-2614(94)01261-X
  47. P.J. Hansen and P. Jurs, J. Chem. Educ. 65, 574 (1988) (and the literature cited therein). https://doi.org/10.1021/ed065p574
  48. H. Hosoya, Bull. Chem. Soc. Jpn. 44, 2332 (1971). https://doi.org/10.1246/bcsj.44.2332
  49. M. Randic, Acta Chim. Slov. 45, 239 (1998).
  50. G. Rücker and C. Rücker, J. Chem. Inf. Cmput. Sci. 39, 788 (1999). https://doi.org/10.1021/ci9900175
  51. H. Wiener, J. Am. Chem. Soc., 69, 17 (1947). https://doi.org/10.1021/ja01193a005
  52. Y.P. Du, Y.Z. Liang, B.Y. Li and C.J. Xu, J. Chem. Inf. Cmput. Sci. 42, 1128 (2002).
  53. M. Randic, J. Am. Chem. Soc. 97, 6609 (1975). https://doi.org/10.1021/ja00856a001
  54. A. Sabljic and N. Trinajstic, Acta Pharm. Ugosl. 31, 189 (1981).
  55. P.G. Sybold, M. May and U.A. Bagal, J. Chem. Edu. 64, 575 (1987). https://doi.org/10.1021/ed064p575
  56. L.B. Kier and L.H. Hall, Molecular Connectivity in Chemistry and Drug Research (Academic Press, New York, 1976).
  57. M. Randic, J. Math. Chem. 7, 155 (1991). https://doi.org/10.1007/BF01200821
  58. M. Randic, D. Mills and S.C. Basak, Int. J. Quantum Chem. 80, 1199 (2000). https://doi.org/10.1002/1097-461X(2000)80:6<1199::AID-QUA6>3.0.CO;2-M
  59. M. Randic, D. Plavsic and N. Lers, J. Chem. Inf. Cmput. Sci. 41, 657 (2001). https://doi.org/10.1021/ci000118z
  60. M. Randic and S.C. Basak, J. Chem. Inf. Cmput. Sci. 41, 614 (2001). https://doi.org/10.1021/ci000114u
  61. M. Randic and M. Pompe, J. Chem. Inf. Cmput. Sci. 41, 575 (2001). https://doi.org/10.1021/ci0001029
  62. L.B. Kier and L.H. Hall, Molecular Connectivity in Structure-Activity (Research Studies Press, Letchwork, 1986).
  63. M. Barysz, D. Plavsic and N. Trinajstic, Match 19, 89 (1986).
  64. I. Gutman and M. Randic, Chem. Phys. Lett. 47, 15 (1977). https://doi.org/10.1016/0009-2614(77)85296-2
  65. A.A. Taherpour and F. Shafiee, J. Mol. Struct. Theochem 726, 183 (2005). https://doi.org/10.1016/j.theochem.2005.03.053
  66. D. Plavsic, S. Nikolic, N. Trinajstic and Z. Mihalic, J. Math. Chem. 12, 235 (1993). https://doi.org/10.1007/BF01164638
  67. L.B. Kier, Quant. Struc.-Act. Relat. 4, 109 (1985). https://doi.org/10.1002/qsar.19850040303
  68. L.B. Kier and L.H. Hall, Molecular Structure Description: The Electrotopological State (Academic Press, New York, 1999).
  69. A. Balaban, Chem. Phys. Lett. 89, 399 (1982). https://doi.org/10.1016/0009-2614(82)80009-2
  70. H. Wiener, J. Am. Chem. Soc. 69, 17 (1947). https://doi.org/10.1021/ja01193a005
  71. E. Estrada, Chem. Phys. Lett. 336, 284 (2000).
  72. A.A. Taherpour, Fullerenes Nanotubes Carbon Nanostruct. 15, 405 (2007). https://doi.org/10.1080/15363830701657776
  73. A.A. Taherpour, Fullerenes Nanotubes Carbon Nanostruct. 16 (2), 142 (2008). https://doi.org/10.1080/15363830801890582
  74. A.A. Taherpour, Fullerenes Nanotubes Carbon Nanostruct. 17 (2), 171 (2009). https://doi.org/10.1080/15363830802672096
  75. Quin-Nan Hu and Yi-Zeng Liang, Internet Electron. J. Mol. Des. 3 (6), 335 (2004).
  76. D. Rehm and A. Weller, Isr. J. Chem. 8, 259 (1970). https://doi.org/10.1002/ijch.197000029
  77. K. Kobayashi, S. Nagase, M. Yoshida and E. Osawa, J. Am. Chem. Soc. 119, 12693 (1997). https://doi.org/10.1021/ja9733088
  78. C. Hansch, A. Leo and D. Hoekman, Exploring QSAR: Hydrophobic, Electronic, Steric Constants (ACS, Washington, DC, 1995).
  79. J.G. Bundy, A.W.J. Morriss, D.G. Durham, C.D. Campbell and G.I. Paton, Chemosphere 42, 885 (2001) (and the literature cited there in). https://doi.org/10.1016/S0045-6535(00)00178-8
  80. A. Li and S.H. Yalkowsky, Ind. Eng. Chem. Res. 37, 4470 (1998). https://doi.org/10.1021/ie980232v
  81. S.D. Bolboaca and L. Jantschi, Int. J. Mol. Sci. 8, 335 (2007). https://doi.org/10.3390/i8040335
  82. Z. Slanina, M.-C. Chao, S.-L. Lee and I. Gutman, J. Serb. Chem. Soc. 62 (3) 211 (1997).