• Title/Summary/Keyword: PCB Nozzle

Search Result 18, Processing Time 0.027 seconds

Optimization Algorithm of Gantry Route Problem for Odd-type Surface Mount Device (이형 부품 표면실장기에 대한 겐트리 경로 문제의 최적 알고리즘)

  • Jeong, Jaewook;Tae, Hyunchul
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.67-75
    • /
    • 2020
  • This paper proposes a methodology for gantry route optimization in order to maximize the productivity of a odd-type surface mount device (SMD). A odd-type SMD is a machine that uses a gantry to mount electronic components on the placement point of a printed circuit board (PCB). The gantry needs a nozzle to move its electronic components. There is a suitability between the nozzle and the electronic component, and the mounting speed varies depending on the suitability. When it is difficult for the nozzle to adsorb electronic components, nozzle exchange is performed, and nozzle exchange takes a certain amount of time. The gantry route optimization problem is divided into the mounting order on PCB and the allocation of nozzles and electronic components to the gantry. Nozzle and electronic component allocation minimized the time incurred by nozzle exchange and nozzle-to-electronic component compatibility by using an mixed integer programming method. Sequence of mounting points on PCB minimizes travel time by using the branch-and-price method. Experimental data was made by randomly picking the location of the mounting point on a PCB of 800mm in width and 800mm in length. The number of mounting points is divided into 25, 50, 75, and 100, and experiments are conducted according to the number of types of electronic components, number of nozzle types, and suitability between nozzles and electronic components, respectively. Because the experimental data are random, the calculation time is not constant, but it is confirmed that the gantry route is found within a reasonable time.

An Efficient PCB Assembly Method by Multiple Adsorption with Gantry Type SMD using Simulation (갠트리 타입 SMD에서 동시 흡착에 의한 효율적 PCB 조립 방안의 시뮬레이션 연구)

  • Moon, Gee-Ju;Kim, Gwang-Pil
    • Journal of the Korea Society for Simulation
    • /
    • v.15 no.4
    • /
    • pp.59-67
    • /
    • 2006
  • An efficient PCB assembly method with Gantry type machine is developed and proposed in this paper to improve system productivity. Nozzle changes at Gantry type machine is the major reason causing lower system performance instead of header and slot movements on the other type machines. The problem is attacked by maximizing multiple adsorptions to reduce the number of necessary nozzle changes with Gantry type machine. It is designed to reduce the assembly time per PCB with multiple adsorptions based upon the positions of feeders and nozzles. A simulation model is constructed to show the effectiveness of the suggested heuristic and necessarily a comparison study is followed with different methods on selection of next assembly feeder and nozzle with various cases.

  • PDF

A Path Planning of Dispenser Machines in PCB Assembly System Using Genetic Algorithm

  • Woo, Min-Jung;Lee, Soo-Gil;Park, Tae-Hyoung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.52.2-52
    • /
    • 2001
  • We propose a new optimization method to improve the productivity of dispenser machines in PCB assembly lines. The optimization problem for multi-nozzle dispensers is formulated as a variant TSP. A genetic algorithm is applied to the problem to get a near-optimal solution. Chromosome and some operator are newly defined to implement the genetic algorithm for multi-nozzle dispensers. Simulation results are then presented to verify the usefulness of the method.

  • PDF

The Prediction of Nozzle Trajectory on Substrate for the Improvement of Panel-Scale Etching Uniformity (에칭공정에서의 Panel-Scale Etching Uniformity 향상을 위한 에칭노즐 궤적예측에 관한 연구)

  • Jeong, Gi-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.160-160
    • /
    • 2008
  • In practical etching process, etch ant is sprayed on the metal-deposited panel through nozzles collectively connected to the manifold and that panel is usually composed of many PCB(printed circuit board)'s. The etching uniformity, the difference between individual PCB's on the same panel, has become one of most important features of etching process. In this paper, the prediction of nozzle trajectory has been performed by the combination of algebraic formula and numerical simulation. With the pre-determined geometrical factors of nozzle distribution, the trajectories of individual nozzles were predicted with the change of process operational factors such as panel speed, nozzle swing frequency and so on. As results, two dimensional distribution of impulsive force of etchant spray which could be considered as a key factor determining the etching performance have been successfully obtained. Though only qualitative prediction of etching uniformity have been predicted by the process developed in this study, the expansion to the quantitative prediction of etching uniformity is expected to be apparent by this study.

  • PDF

A Research of Nozzle Spray System of Vertical Type Etcher (수직형 식각 장비의 노즐 분사 시스템에 대한 연구)

  • Kim, Jum-Young;Joo, Kang-Wo;Yoon, Jong-Kook;Ryu, Sun-Joong;Kim, Kwang-Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.125-130
    • /
    • 2011
  • The recent PCB (Printed Circuit Board) wet etcher has been needed to process pattern within $20{\mu}m$ width on a $20{\mu}m$ thick board. A previous PCB etcher can be used with multiple points of roller rolls or slips off a board. Also, the damage of the board by contacting the roller increases the friction defects. A vertical type boards transporting process is developed to solve the problems of boards friction and sagging in a horizontal etcher. In this research, CFD (Computational Fluid Dynamics) method is used to design an improved spray nozzle including the critical part of etcher, and establish the design method. Meanwhile, major spray characteristics are expected in diverse nozzle types and variables. Lastly, diverse simulation results are adapted to design an improved nozzle and spray system.

A Study on UV Laser Ablation for Micromachining of PCB Type Substrate (다층 PCB 기판의 미세 가공을 위한 UV레이저 어블레이션에 관한 연구)

  • 장원석;김재구;윤경구;신보성;최두선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.887-890
    • /
    • 1997
  • Recently micromachining using DPSSL(Diode Pumped Solid State Laser) with 3rd harmonic wavelength is actively studied in laser machining area. Micromachining using DPSSL have outstanding advantages as UV source comparing with excimer laser in various aspect such a maintenance cost, maskless machining, high repetition rate and so on. In this study micro-drilling of PCB type substrate which consists of Cu-PI-Cu layer was performed using DPSS Nd:YAG laser(355nm, wavelength) in vector scanning method. Experimental and numerical method(Matlab simulation, FEM) are used to optimize process parameter and control machining depth. The man mechanism of this process is laser ablation. It is known that there is large gap between energy threshold of copper and that of PI. Matlab simulation considering energy threshold of material is performed to effect of duplication of pulse and FEM thermal analysis is used to predict the ablation depth of copper. This study could be widely used in various laser micromachining including via hole microdrilling of PCB, and micromachining of semiconductor components, medical parts and printer nozzle and so on.

  • PDF

A Study on the Polishing Characteristics Using Floating Nozzle in Linear Roll CMP (선형 롤 CMP에서 플로팅 노즐을 이용한 연마 특성에 관한 연구)

  • Lee, Chiho;Jeong, Haedo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.7
    • /
    • pp.627-631
    • /
    • 2015
  • Conventional etching technology is in the face of problems such as dishing, erosion resulting from non-uniform removal of film. Advanced printed circuit board (PCB) requires accurate wire formation with the aid of planarization by chemical mechanical polishing (CMP). Linear roll CMP is a line contact continuous process which removes the film by pressurization and rotation while slurry is supplied to polishing pad attached to the roll. This paper focuses on the design of floating nozzle on the linear roll CMP equipment which makes the slurry supply uniformly on the roll pad. Experimental results show that removal rate using the floating nozzle increases 3 times higher than that without it and non-uniformity is less than 15%.

Development of the Process Planning Program for a Multi-functional Surface Mounting Device (다기능 표면실장기의 공정계획 프로그램 개발)

  • Sohn, Jin-Hyeon;Yu, Sung-Yeol;Kang, Jang-Ha;Park, Sung-Soo;Oh, Byung-Jun;Seong, Pil-Young
    • IE interfaces
    • /
    • v.10 no.1
    • /
    • pp.155-167
    • /
    • 1997
  • The purpose of this study is to develop the program for efficient operation of a multi-functional surface mounting device(SMD) which mount various components on a printed circuit board(PCB). These components are provided by diverse types of feeders such as cassette, stick and tray feeders. The SMD has one or two heads. In the SMD, the positions of PCB and feeders and fixed, and the head moves to pick up a component from a feeder and to mount it on the PCB. The number of lanes occupied by each feeder and the nozzle used for each component can be different. We develop an off-line program to minimize the cycle-time of the SMD by studying the optimal assignment of feeders and the optimal mounting sequence of components. Graphical User Interface(GUI) is also developed. Additionally, we consider the line balancing problem which appears when two SMDs are used sequentially.

  • PDF

Analysis of Fluid-Structure Interaction of Cleaning System of Micro Drill Bits (마이크로 드릴비트 세척시스템의 유체-구조 연성해석)

  • Kuk, Youn-Ho;Choi, Hyun-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.1
    • /
    • pp.8-13
    • /
    • 2016
  • The micro drill bit automatic regrinding in-line system is a system that refurbishes drill bits used in a PCB manufacturing process. This system is able to refurbish drill bits with a minimum size of ø0.15-0.075mm that have previously been discarded. Beyond the conventional manual cleaning process using ultrasound, this system adopts a water jet cleaning system, making it capable of cleaning drill bits with a minimum size of ø0.15-0.075mm. This paper analyses various contact pressures applied to the surface of drill bits depending on the shooting pressure of the cleaning device and fluid velocity in order to optimize the nozzle location and to detect structural instability caused by the contact pressures.