• Title/Summary/Keyword: PC(Polycarbonate)

Search Result 261, Processing Time 0.032 seconds

The characteristics of Ga, B-codoped ZnO (GZOB) thin film on $O_2$ plasma treated PC substrate ($O_2$ 플라즈마로 처리한 PC기판 위에 성장된 GZOB 박막의 특성)

  • Yu, Hyun-Kyu;Lee, Jong-Hwan;Lee, Tae-Yong;Hur, Won-Young;Lee, Kyung-Chun;Shin, Hyun-Chang;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.108-109
    • /
    • 2009
  • In this study we investigated the characteristics of GZOB thin film on $O_2$ plasma treated Polycarbonate substrate using DC magnetron sputtering method. In our experiments results, GZOB thin film on $O_2$ plasma treated Polycarbonate substrate showed low resistivity than As-grown GZOB thin film, and visible transmission of 85% with a thickness 400 nm. Compared with As-Grown the electrical properties of GZOB were relatively improved by $O_2$ plasma treated substrate. From these results, we could confirm the suitable GZOB thin films for transparent electrode.

  • PDF

Ultra-precision Cutting of Polycarbonate for Optical Components by Using Elliptical Vibration Cutting Method (타원진동절삭가공법에 의한 광학부품용 폴리카보네이트 수지의 초정밀가공)

  • Song, Young-Chan;Park, Chun-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.42-49
    • /
    • 2009
  • The optical elements made of plastics are normally produced by mass production such as injection molding with use of precision dies and molds. It costs to prepare the dies and molds, and it is only justified to prepare such expensive dies and molds when the parts are massively produced. On the other hand, it is too expensive and inefficient when precision plastic parts are needed only in small quantities, such as a case of trial manufacturing of new products. An ultra-precision diamond cutting is one of promising processes to produce the precision plastic parts in such cases. But it is commonly believed that an ultra-precision cutting of plastics for optical components is very difficult, because they are thermo-plastic material. In the present research, an ultra-precision diamond cutting of polycarbonate (PC), that is one of typical optical materials, was tried by using elliptical vibration cutting method. It is experimentally proved that good optical surfaces were obtained by using elliptical vibration cutting in cases of grooving and flat surfaces. The maximum surface roughness of less than 60 nm in peak to valley value is acquired.

New Polymerization using Microwave Radiation

  • Lee, Jae-Heung;Kim, Yong-Seok;Hong, Young-Taik;Jung, Hyun-Min;Oh, Hyoung-Suk
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.213-213
    • /
    • 2006
  • High molecular weight of polycarbonate(PC) and well dispersed PC/MMT nanocomposites were successfully prepared through the novel technology, microwave solid-state polymerization. In our studies, the microwave irradiation is more effective than conventional oil-bath heating on achieving the high molecular weight and uniform nanocomposites. Using the polycarbonate prepolymer made it possible to intercalate the short chains into the galleries of MMT more easily. And it was observed that prepared nanocomposites by microwave solid-state polymerization have more uniform dispersion of silicate of MMT into the polymer matrix than by oil heating.

  • PDF

A study on the AIN thin films fabricated by RF magnetron sputtering (RF Magnetron Sputtering 법으로 제조된 AIN 박막에 관한 연구)

  • 남창길;최승우;천희곤;조동율
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.1
    • /
    • pp.44-49
    • /
    • 1997
  • AIN thin films were deposited on silicon and glass substrates by sputtering Al target and introducing mixed gases of argon and nitrogen into reactive RF magnetron sputter. The substrate was not heated to protect the PC (polycarbonate) substrate and the micro-sized pregroove morphology on the surface of PC substrate. But its temperature was around $100^{\circ}C$ due to the self-heating by plasma. The crystallinity, cross-section morphology and refractive index were characterized by changing various deposition parameters.

  • PDF

Study on Electrical and Thermal Properties of Poly(3,4-ethylenedioxythiophene)-coated Polycarbonate Fi1ms (Poly(3,4-ethylenedioxythiophene)으로 코팅된 Polycarbonate 필름의 전기적 특성과 열적 특성에 관한 연구)

  • Sangsoo Jeon;Seungsoon Im
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.169-170
    • /
    • 2003
  • There was little development in transparent conductive polymer films and their limited studies have been mainly focused on polymer films coated by water-soluble PEDOT doped with the polymeric counteranion poly(4-styrenesulfonate) (PEDOT-PSS)[1-3]. However PEDOT-PSS as coating material has some difficulties because of high viscosity and low solubility in organic solvent except for in water. In this study, in order to extend practical applications of PEDOT and to prepare conductive PC films, we tried to prepare PEDOT-coated PC films and investigated their conductivity and thermal stability. (omitted)

  • PDF

Simultaneous Control of Au Nanotube Lengths and Pore Sizes with a Single Kind of Polycarbonate Membrane via Interfacial Deposition at the Air/Water Interface

  • Pyo, Myoung-Ho;Joo, Jung-Sook;Jung, Youn-Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1285-1288
    • /
    • 2007
  • Au was electrolessly deposited on polycarbonate (PC) membranes (0.1 μm pores) at the air/water interface. It was found that the Au nanotube dimension can be controlled by adjusting the plating temperature and the solution composition. Interfacial deposition of Au at relatively low temperatures (4℃) produced long nanotubes, which run through the whole membrane thickness with small openings. Increase of plating temperatures resulted in the decrease of nanotube lengths and Au film thicknesses. It was also disclosed that the inside-diameter of Au nanotubes can be controlled with negligible variations in length by changing the composition of a plating solution.

Temperature Dependence of Optical Properties on Polymer Materials (폴리머 재료에서의 광학적 물성의 온도의존성)

  • 정승묵;신영곤;이상훈;송국현;김영진;이낙규;나경환
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.4
    • /
    • pp.5-11
    • /
    • 2004
  • Optical properties of PET(Polyethylene terephthalate), PC(Polycarbonate), Acrylic resin and PE(Polyethylene) sheets were studied as a function of heat treating temperature of $60^{\circ}C$ to $150^{\circ}C$. By the heat treatment, optical properties of transmittance, absorbance, and reflectance showed a considerable change with different ways according to the materials. To understand the reason of optical property change, X-ray diffraction and surface morphology were also investigated. It was observed that small crystallite and pore that can cause scattering largely affect the transmittance. It was suggested that change of surface chemical bond induce the reflectance variation.

  • PDF

Al2O3 Coating on Transparent Polycarbonate Substrates for the Hard-coating Application (투명 폴리카보네이트 보호코팅을 위한 산화알루미늄 박막)

  • Kim, Hun;Nam, Kyoung-Hee;Jang, Dong-Su;Lee, Jung-Joong
    • Journal of Surface Science and Engineering
    • /
    • v.40 no.4
    • /
    • pp.159-164
    • /
    • 2007
  • Transparent aluminum oxide films were deposited on polycarbonate (PC) substrates by inductively coupled plasma (ICP) assisted reactive sputtering. the oxygen flow rate was regulated by controlling the target voltage with a proportional integrate derivative controller. The PC substrate was treated with plasma prior to the deposition in order to the enhance the adhesive strength of the $Al_2O_3$ film. The characteristics of hardness, structure, density, transmittance, deposition rate, surface roughness and residual stress were investigated to estimate the possibility for the hard coating.

Study on GO Dispersion of PC/GO Composites according to In-situ Polymerization Method (In-situ 중합방법에 따른 폴리카보네이트(PC)/그래핀 옥사이드(GO) 복합체의 GO 분산성 연구)

  • Lee, Bom Yi;Park, Ju Young;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.336-340
    • /
    • 2015
  • Three different types of polycarbonate (PC)/graphene oxide (GO) composites using diphenyl carbonate as a monomer were fabricated by melt polymerization. Those were the PC/GO composite (PC/GO) using a twin extruder, in-situ PC/GO composite (PC/GO-cat.) using a catalyst, and in-situ PC/GO composite (PC/GO-COCl) using a GO-COCl treated by -COCl, Chemical structures of the composites were confirmed by C-H and C=O stretching peak at $3000cm^{-1}$ and $1750cm^{-1}$, respectively. The slope for the storage (G') versus loss (G") modulus plot decreased with an increase in the heterogeneous property of polymer melts. So we can check the GO dispersion of the PC/GO composites using by the slop for G'-G" plot. According to the G'- G" slopes for three different types of PC/GO composites, GO was well dispersed within PC matrix in case of PC/GO and PC/GO-cat.. It was also confirmed by atomic force microscope (AFM) photos. One of the reasons for the poor GO dispersion of PC/GO-COCl is branching and crosslinking processes occurred during polymerization, which was further confirmed by a plot for the complex modulus versus phase difference.