• Title/Summary/Keyword: PARP-1

Search Result 387, Processing Time 0.021 seconds

Effects of the Water Extract from Albizzia julibrissin on Apoptosis and Cell Cycle Progression in the Human Leukemic Jurkat Cells (백혈병 세포주 Jurkat의 세포고사 유도 및 세포주기 억제에 미치는 합산피 추출물의 효과)

  • Park Young Jun;Jung Woo Cheal;Jeong Dae Young;Lee Yong Un;Lee In;Lee Key Sang;Jeon Byung Hun;Sung Kang Keyng;Moon Byung Soon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.6
    • /
    • pp.1383-1392
    • /
    • 2003
  • Apoptosis is a morphologically and biochemically district form of cell death that occurs in many different cell types in a wide variety of organisms. Albizzia julibrissin belonging the family Leguminosae has been used for the treatment of contusion, sore throat, amnesia, and insomnia in oriental traditional medicine. This study investigates whether the water extract of A. julibrissin induce apoptotic cell death in Jurkat T-acute lymphoblastic leukemia (ALL) cells. Jurkat cells were increased inhibitions of cell viability in a concentration-dependent manner by A. julibrissin. This herbal medicine also caused apoptosis as measured by cell morphology and DNA fragmentation. The capability of A. julibrissin to induce apoptosis was associated with proteolytic cleavage of specific target proteins such as poly (ADP-ribose)polymerase (PARP) and beta-catenin proteins suggesting the possible involvement of caspases. Our result showed that Bcl-2 and Bax protein levels were not changed in all A. julibrissin-treated groups compared to control group. These results suggest that A. julibrissin-mediated apoptosis is independent with Bcl-2 related signaling pathway in this cells. The purpose of the present study is also to investigate the Effect of A. julibrissin on cell cycle progression. Our results showed that G1 checkpoint related gene products (cyclin D1, cyclin dependent kinase 4, retinoblastoma, E2F1) were decreased in their protein levels in a dose-dependent manners after treatment of the extract. These results indicate that the increase of apoptotic cell death by A. julibrissin may be due to the inhibition of cell cycle progression in wild type p53-lacking Jurkat cells.

Induction of Apoptosis by Pachymic Acid in T24 Human Bladder Cancer Cells (T24 인체방광암 세포에서 pachymic acid에 의한 apoptosis 유발)

  • Jeong, Jin-Woo;Baek, Jun Young;Kim, Kwang Dong;Choi, Yung Hyun;Lee, Jae-Dong
    • Journal of Life Science
    • /
    • v.25 no.1
    • /
    • pp.93-100
    • /
    • 2015
  • Pachymic acid (PA) is a lanostane-type triterpenoid derived from the Poria cocos mushroom. Several beneficial biological features of PA provide medicine with a wide variety of valuable effects, such as anticancer and anti-inflammatory activity; it also has antioxidant effects against oxidative stress. Nonetheless, the biological properties and mechanisms that produce this anti-cancer action of PA remain largely undetermined. In this study, we investigated the pro-apoptotic effects of PA in T24 human bladder cancer cells. It was found that PA could inhibit the cell growth of T24 cells in a dose-dependent manner, which was associated with the induction of apoptotic cell death, as evidenced by the formation of apoptotic bodies and chromatin condensation and accumulation of cells in the sub-G1 phase. The induction of apoptotic cell death by PA was connected with an up-regulation of pro-apoptotic Bax and Bad protein expression and down-regulation of anti-apoptotic Bcl-2 and Bcl-xL proteins, and inhibition of apoptosis family proteins. In addition, apoptosis-inducing concentrations of PA induced the activation of caspase-9, an initiator caspase of the mitochondrial-mediated intrinsic pathway, and caspase-3, accompanied by proteolytic degradation of poly (ADP-ribose)-polymerase. PA also induced apoptosis via a death receptor-mediated extrinsic pathway by caspase-8 activation, resulting in the truncation of Bid and suggesting the existence of cross-talk between the extrinsic and intrinsic pathways. Taken together, the present results suggest that PA may be a potential chemotherapeutic agent for the control of human bladder cancer cells.

Schedule-Dependent Effect of Epigallocatechin-3-Gallate (EGCG) with Paclitaxel on H460 Cells

  • Park, Sunghoon;Kim, Joo-Hee;Hwang, Yong Il;Jung, Ki-Suck;Jang, Young Sook;Jang, Seung Hun
    • Tuberculosis and Respiratory Diseases
    • /
    • v.76 no.3
    • /
    • pp.114-119
    • /
    • 2014
  • Background: Epigallocatechin-3-gallate (EGCG), a major biologically active component of green tea, has anti-cancer activity in human and animal models. We investigated the schedule-dependent effect of EGCG and paclitaxel on growth of NCI-H460 non-small cell lung cancer cells. Methods: To investigate the combined effect of EGCG (E) and paclitaxel (P), combination indices (CIs) were calculated, and cell cycle analysis was performed. For the effect on cell apoptosis, western blot analysis was also performed. Results: CI analysis demonstrated that both concurrent and sequential E ${\rightarrow}$ P treatments had antagonistic effects (CIs >1.0), but sequential P ${\rightarrow}$ E had synergistic effects (CIs <1.0), on the growth inhibition of NCI-H460 cells. In the cell cycle analysis, although paclitaxel induced $G_2/M$ cell cycle arrest and increased the sub-G1 fraction, concurrent EGCG and paclitaxel treatments did not have any additive or synergistic effects compared with the paclitaxel treatment alone. However, western blot analysis demonstrated that sequential P ${\rightarrow}$ E treatment decreased the expression of Bcl-2 and procaspase-3 and increased poly(ADP-ribose) polymerase (PARP) cleavage; while minimal effects were seen with concurrent or sequential E ${\rightarrow}$ P treatments. Conclusion: Concurrent or sequential E ${\rightarrow}$ P treatment had opposite effects to P ${\rightarrow}$ E treatment, where P ${\rightarrow}$ E treatment showed a synergistic effect on growth inhibition of NCI-H460 cells by inducing apoptosis. Thus, the efficacy of EGCG and paclitaxel combination treatment seems to be schedule-dependent.

Induction of Apoptosis in Human Colon Carcinoma HCT116 Cells Using a Water Extract of Lepidium virginicum L. (콩다닥냉이 추출물에 의한 HCT116 대장암세포의 사멸 유도에 관한 연구)

  • Chae, Yang-Hui;Shin, Dong-Yeok;Park, Cheol;Lee, Yong-Tae;Moon, Sung-Gi;Choi, Yung-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.5
    • /
    • pp.649-659
    • /
    • 2011
  • To examine the anti-cancer effects of Lepidium virginicum L., the anti-proliferative and pro-apoptotic effects of a water extract of L. virginicum leaves (WELVL) and of L. virginicum roots (WELVR) were investigated in HCT116 human colon carcinoma cells. The treatment of HCT116 cells with WELVL and WELVR resulted in the inhibition of growth and morphological changes in a concentration-dependent manner by inducing apoptosis. The growth inhibition and apoptosis induction by WELVR was stronger than that of WELVL thus, we determined that WELVR was the more optimal extract for this study. The increased apoptotic events in HCT116 cells caused by WELVR were associated with an up-regulation of Fas ligand, Bax, and Bad expression, a down-regulation of Bcl-2, Bcl-$_XL$, and Bid expression, and a decrease in the mitochondrial membrane potential (MMP, ${\Delta}{\psi}m$). WELVR treatment induced the proteolytic activation of caspase-3, -8, and -9, and the degradation of caspase-3 substrate proteins, such as poly (ADP-ribose) polymerase (PARP), ${\beta}$-catenin, and phospholipase C-${\gamma}1$ (PLC-${\gamma}1$). In addition, apoptotic cell death induced by WELVR was correlated with a down-regulation of inhibitors of the apoptosis protein (IAP) family, such as the X-linked inhibitor of apoptosis protein (XIAP), cIAP-1, and cIAP-2. These findings suggest that the WELVR-induced inhibition of cell proliferation is associated with the induction of apoptotic cell death. WELVR may be a potential chemotherapeutic agent for the control of HCT116 human colon carcinoma cells.

Raloxifene Induces Autophagy-Dependent Cell Death in Breast Cancer Cells via the Activation of AMP-Activated Protein Kinase

  • Kim, Dong Eun;Kim, Yunha;Cho, Dong-Hyung;Jeong, Seong-Yun;Kim, Sung-Bae;Suh, Nayoung;Lee, Jung Shin;Choi, Eun Kyung;Koh, Jae-Young;Hwang, Jung Jin;Kim, Choung-Soo
    • Molecules and Cells
    • /
    • v.38 no.2
    • /
    • pp.138-144
    • /
    • 2015
  • Raloxifene is a selective estrogen receptor modulator (SERM) that binds to the estrogen receptor (ER), and exhibits potent anti-tumor and autophagy-inducing effects in breast cancer cells. However, the mechanism of raloxifene-induced cell death and autophagy is not well-established. So, we analyzed mechanism underlying death and autophagy induced by raloxifene in MCF-7 breast cancer cells. Treatment with raloxifene significantly induced death in MCF-7 cells. Raloxifene accumulated GFP-LC3 puncta and increased the level of autophagic marker proteins, such as LC3-II, BECN1, and ATG12-ATG5 conjugates, indicating activated autophagy. Raloxifene also increased autophagic flux indicators, the cleavage of GFP from GFP-LC3 and only red fluorescence-positive puncta in mRFP-GFP-LC3-expressing cells. An autophagy inhibitor, 3-methyladenine (3-MA), suppressed the level of LC3-II and blocked the formation of GFP-LC3 puncta. Moreover, siRNA targeting BECN1 markedly reversed cell death and the level of LC3-II increased by raloxifene. Besides, raloxifene-induced cell death was not related to cleavage of caspases-7, -9, and PARP. These results indicate that raloxifene activates autophagy-dependent cell death but not apoptosis. Interestingly, raloxifene decreased the level of intracellular adenosine triphosphate (ATP) and activated the AMPK/ULK1 pathway. However it was not suppressed the AKT/mTOR pathway. Addition of ATP decreased the phosphorylation of AMPK as well as the accumulation of LC3-II, finally attenuating raloxifene-induced cell death. Our current study demonstrates that raloxifene induces autophagy via the activation of AMPK by sensing decreases in ATP, and that the overactivation of autophagy promotes cell death and thereby mediates the anti-cancer effects of raloxifene in breast cancer cells.

Potentiation of Anticancer Effect of Artesunate by Combination with Nonsteroidal Anti-inflammatory Drugs on Human Cancer Cells (Artesunate와 비스테로이드소염제 NSAID의 병용 처리에 의한 항암 활성 증강)

  • Moon, Hyun-Jung;Kang, Chi-Dug;Kim, Sun-Hee
    • Journal of Life Science
    • /
    • v.31 no.10
    • /
    • pp.873-884
    • /
    • 2021
  • The purpose of present study is to investigate the role of artesunate (ART) in enhancing anticancer effect of nonsteroidal anti-inflammatory drug (NSAID) on human cancer cells, and we elucidate a possible molecular mechanism of this combination effect. We showed that the combined effect of ART with NSAID such as celecoxib (CCB) or dimethyl-CCB (DMC) in various type of human cancer cells. After ART treatment, the expression of p62, nuclear factor erythroid 2-like 2 (NRF2) and cancer stemness (CS)-related proteins including CD44, CD133, aldehyde dehydrogenase 1 (ALDH1), octamer-binding transcription factor 4 (Oct4), mutated p53 (mutp53) and c-Myc was down-regulated. ART induced autophagy as reduction of the autophagy receptor p62, which was associated with up-regulation of activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP), and simultaneous down-regulation of NRF2 and CS-related proteins was occurred in the human cancer cells. These results indicate a possibility that ART activates autophagy through ATF4-CHOP cascade leading to down-regulation of CS-related proteins and subsequently eradicated cancer stem cells. In addition, co-treatment with ART and imatinib was more effective than either drug alone on growth inhibition and apoptosis induction of cancer cells. In conclusion, induction of autophagy-dependent cell death by ART might play a critical role in mediating the synergistic effect of drug combination (ART/NSAID and ART/imatinib). Therefore, ART could be a promising candidate as a chemosensitizer to enhance the anticancer effects of NSAID and imatinib.

3-Deoxysappanchalcone Inhibits Cell Growth of Gefitinib-Resistant Lung Cancer Cells by Simultaneous Targeting of EGFR and MET Kinases

  • Jin-Young Lee;Seung-On Lee;Ah-Won Kwak;Seon-Bin Chae;Seung-Sik Cho;Goo Yoon;Ki-Taek Kim;Yung Hyun Choi;Mee-Hyun Lee;Sang Hoon Joo;Jin Woo Park;Jung-Hyun Shim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.4
    • /
    • pp.446-455
    • /
    • 2023
  • The mechanistic functions of 3-deoxysappanchalcone (3-DSC), a chalcone compound known to have many pharmacological effects on lung cancer, have not yet been elucidated. In this study, we identified the comprehensive anti-cancer mechanism of 3-DSC, which targets EGFR and MET kinase in drug-resistant lung cancer cells. 3-DSC directly targets both EGFR and MET, thereby inhibiting the growth of drug-resistant lung cancer cells. Mechanistically, 3-DSC induced cell cycle arrest by modulating cell cycle regulatory proteins, including cyclin B1, cdc2, and p27. In addition, concomitant EGFR downstream signaling proteins such as MET, AKT, and ERK were affected by 3-DSC and contributed to the inhibition of cancer cell growth. Furthermore, our results show that 3-DSC increased redox homeostasis disruption, ER stress, mitochondrial depolarization, and caspase activation in gefitinib-resistant lung cancer cells, thereby abrogating cancer cell growth. 3-DSC induced apoptotic cell death which is regulated by Mcl-1, Bax, Apaf-1, and PARP in gefitinib-resistant lung cancer cells. 3-DSC also initiated the activation of caspases, and the pan-caspase inhibitor, Z-VAD-FMK, abrogated 3-DSC induced-apoptosis in lung cancer cells. These data imply that 3-DSC mainly increased mitochondria-associated intrinsic apoptosis in lung cancer cells to reduce lung cancer cell growth. Overall, 3-DSC inhibited the growth of drug-resistant lung cancer cells by simultaneously targeting EGFR and MET, which exerted anti-cancer effects through cell cycle arrest, mitochondrial homeostasis collapse, and increased ROS generation, eventually triggering anti-cancer mechanisms. 3-DSC could potentially be used as an effective anti-cancer strategy to overcome EGFR and MET target drug-resistant lung cancer.

Anti-cancer Potentials of Rhus verniciflua Stokes, Ulmus davidiana var. japonica Nakai and Arsenium Sublimatum in Human Gastric Cancer AGS Cells (AGS 인체위암세포에서 건칠, 유근피 및 신석 추출물의 항암 활성 비교 연구)

  • Baek, Ilsung;Im, Lyeng-Hae;Park, Cheol;Cho, Yung Hyun
    • Journal of Life Science
    • /
    • v.25 no.8
    • /
    • pp.849-860
    • /
    • 2015
  • The anti-cancer activities of Rhus verniciflua Stokes (GC), Ulmus davidiana var. japonica Nakai (UGP) and arsenium sublimatum (SS) extracts, which have been used Oriental medicine therapy for various diseases, were investigated. The treatment of GC, UGP and SS alone, and combined treatment with GC, UGP and SS did not affect the cell viability in the mouse normal cell lines (RAW 264.7 macrophages and C2C12 myoblasts). However, co-treatment with GC, UGP and SS markedly induces apoptosis in human gastric cancer AGS cells, but not in other various cancer cell lines (human lung cancer A549, colon cancer HCT116, liver cancer Hep3B and bladder T24 cells) as evidenced by formation of apoptotic bodies, chromatin condensation, and accumulation of annexin-V positive cells. Co-treatment with GC, UGP and SS effectively induced the expression levels of Fas and Fas ligand, and inhibited the levels IAP family proteins such as XIAP, cIAP-1 and survivin, and anti-apoptotic Bcl-xL proteins compared with treatment with either agent alone. Combined treatment also significantly induced the loss of mitochondrial membrane potential, which was associated with the activation of caspases (-3, -8, and -9) and degradation of poly (ADP-ribose) polymerase. However, the cytotoxic effects induced by co-treatment with GC, UGP and SS were significantly attenuated by pan-caspases inhibitor, z-VAD-fmk, indicating an important role for caspases. These results indicated that the caspases were key regulators of apoptosis in response to co-treatment of GC, UGP and SS in human gastric cancer AGS cells and further studies will be needed to identify the active compounds.

Anticancer Effects of Typhae Pollen on HepG2 Human Hepatocellular Carcinoma

  • Joo, Jeong-Hyun;Kim, Kyung-Soon;Choi, Hong-Sik;Kim, Seung-Mo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.32 no.4
    • /
    • pp.261-270
    • /
    • 2018
  • The aim of this study was to evaluate the antitumor activities of Typhae pollen (TP) by confirming in vitro cytotoxicity and in vivo anti-tumor and immune-modulatory effect with anti-cachexia effect. The MTT assay is used in HepG2 cell to detect potential cytotoxic activities of aqueous extract of Typhae pollen (TPe). After HepG2 tumor cell implantation, eight mice per groups were assigned to six groups. Three different dosages of TPe (500, 250 and 125 mg/kg) were orally administered in the amount of $10m{\ell}/kg$ and sorafenib also administered 20mg/kg, every day for 35 days from 28 days after the tumor cell implantation. We observed the changes on body weights, tumor volume and weights, lymphatic organ, serum interferon $(IFN)-{\gamma}$ levels, splenocytes and peritoneal NK cell activity, splenic tumor necrosis factor $(TNF)-{\alpha}$, interleukin $(IL)-1{\beta}$, IL-10 contents. Periovarian fat weights, serum IL-6 levels, thicknesses of deposited periovarian adipose tissue and mean diameters were also detected to monitor the tumor-related anticachexic effects. In tumor masses, the immunoreactivities of cleaved caspase-3 and cleaved poly (ADP-ribose) polymerase (cleaved PARP) - apoptotic marks, cyclooxygenase-2 (COX-2), inducible nitric oxide synthases (iNOS) and tumor necrosis factor $(TNF)-{\alpha}$ were additionally observed by immunohistochemistry. The results were compared with sorafenib. Decreases of COX-2 were demonstrated in sorafenib and TPe treated mice and also increases of iNOS in tumor masses were observed in TPe, not in sorafenib. TPe increased periovarian fat pad weights compared with tumor-bearing controls and sorafenib treated mice. TPe showed increases of splenic $TNF-{\alpha}$, IL-10 and $IL-1{\beta}$, serum $IFN-{\gamma}$ and NK cell activities corresponding to increases of spleen weights, lymph node weights and non-atrophic changes of lymph nodes. Our results show oral treatment of TPe 500, 250 and 125 mg/kg has potent in vitro and in vivo antitumor activities through modest cytotoxic effects, immunomodulatory effects and apoptotic activities in HepG2 tumor cells. In addition, TPe can prevent cancer related cachexia.

Herbal medicine In-Jin-Ho-Tang as a potential anti-cancer drug by induction of apoptosis in human hepatoma HepG2 cells. (사람 간암 세포주인 HepG2에 대한 인진호탕(茵陳蒿湯)의 항암 효과)

  • Yun, Hyun-Joung;Kim, Byung-Wan;Lee, Chang-Hyun;Jung, Jae-Ha;Heo, Sook-Kyung;Park, Won-Hwan;Park, Sun-Dong
    • The Korea Journal of Herbology
    • /
    • v.22 no.3
    • /
    • pp.27-37
    • /
    • 2007
  • Objectives: Hepatocellular carcinoma is the most common primary malignant tumor of the liver worldwide. In-Jin-Ho-Tang(IJHT) has been used as a traditional Chinese herbal medicine since ancient time. and today it is widely applied as a medication for jaundice which is associated with inflammation in liver. In this study, I investigated whether methanol extract of IJHT induced HepG2 cancer cell death. Methods: Cytotoxic activity of IJHT on HepG2 cells was using XTT assay. Apoptosis induction by Ros A in HCT116 cells was verified by the induction of cleavage of poly ADP-ribose polymerase (PARP). and activation of caspase-3, -8 and -9. The release of cytochrome c from mitochondria to cytosol. the level of Bcl-2 and Bax and the expression of p53 and p21 were examined by western blotting analysis. Furthermore, MAPKs activation was analyzed by western blotting analysis. Results: IJHT induced apoptosis in HepG2 cells. And treatment of IJHT resulted in the release of cytochrome c into cytosol, decreased anti-apoptotic Bcl-2, and increased pri-apoptotic Bax expression. IJHT markedly inactivated extracellular signal-regulated kinase (ERK1/2), and activated p38 mitogen-activated protein (MAP) kinase. Sodium orthovanadate (SOV), a phosphatase inhibitor, to reverse IJHT-induced ERK1/2 inactivation and SB203580, a specific p38 MAP Kinase inhibitor efficiently blocked apoptosis of HepG2. Thus, IJHT induces apoptosis in HepG2 cells via MAP kinase modulation. Conclusion: These results indicated that IJHT has some potential for use as an anti-cancer agent.

  • PDF