Browse > Article
http://dx.doi.org/10.14348/molcells.2015.2193

Raloxifene Induces Autophagy-Dependent Cell Death in Breast Cancer Cells via the Activation of AMP-Activated Protein Kinase  

Kim, Dong Eun (Institute for Innovative Cancer Research, University of Ulsan College of Medicine, Asan Medical Center)
Kim, Yunha (Institute for Innovative Cancer Research, University of Ulsan College of Medicine, Asan Medical Center)
Cho, Dong-Hyung (Graduate School of East-West Medical Science, Kyung Hee University)
Jeong, Seong-Yun (Institute for Innovative Cancer Research, University of Ulsan College of Medicine, Asan Medical Center)
Kim, Sung-Bae (Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center)
Suh, Nayoung (Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center)
Lee, Jung Shin (Institute for Innovative Cancer Research, University of Ulsan College of Medicine, Asan Medical Center)
Choi, Eun Kyung (Institute for Innovative Cancer Research, University of Ulsan College of Medicine, Asan Medical Center)
Koh, Jae-Young (Neural Injury Research Center and Department of Neurology, Asan Medical Center)
Hwang, Jung Jin (Institute for Innovative Cancer Research, University of Ulsan College of Medicine, Asan Medical Center)
Kim, Choung-Soo (Institute for Innovative Cancer Research, University of Ulsan College of Medicine, Asan Medical Center)
Abstract
Raloxifene is a selective estrogen receptor modulator (SERM) that binds to the estrogen receptor (ER), and exhibits potent anti-tumor and autophagy-inducing effects in breast cancer cells. However, the mechanism of raloxifene-induced cell death and autophagy is not well-established. So, we analyzed mechanism underlying death and autophagy induced by raloxifene in MCF-7 breast cancer cells. Treatment with raloxifene significantly induced death in MCF-7 cells. Raloxifene accumulated GFP-LC3 puncta and increased the level of autophagic marker proteins, such as LC3-II, BECN1, and ATG12-ATG5 conjugates, indicating activated autophagy. Raloxifene also increased autophagic flux indicators, the cleavage of GFP from GFP-LC3 and only red fluorescence-positive puncta in mRFP-GFP-LC3-expressing cells. An autophagy inhibitor, 3-methyladenine (3-MA), suppressed the level of LC3-II and blocked the formation of GFP-LC3 puncta. Moreover, siRNA targeting BECN1 markedly reversed cell death and the level of LC3-II increased by raloxifene. Besides, raloxifene-induced cell death was not related to cleavage of caspases-7, -9, and PARP. These results indicate that raloxifene activates autophagy-dependent cell death but not apoptosis. Interestingly, raloxifene decreased the level of intracellular adenosine triphosphate (ATP) and activated the AMPK/ULK1 pathway. However it was not suppressed the AKT/mTOR pathway. Addition of ATP decreased the phosphorylation of AMPK as well as the accumulation of LC3-II, finally attenuating raloxifene-induced cell death. Our current study demonstrates that raloxifene induces autophagy via the activation of AMPK by sensing decreases in ATP, and that the overactivation of autophagy promotes cell death and thereby mediates the anti-cancer effects of raloxifene in breast cancer cells.
Keywords
AMPK; ATP; autophagy; breast cancer; raloxifene;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Alers, S., Loffler, A.S., Wesselborg, S., and Stork, B. (2012). Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol. Cell. Biol. 32, 2-11.   DOI
2 Balgi, A.D., Fonseca, B.D., Donohue, E., Tsang, T.C., Lajoie, P., Proud, C.G., Nabi, I.R., and Roberge, M. (2009). Screen for chemical modulators of autophagy reveals novel therapeutic inhibitors of mTORC1 signaling. PLoS One 4, e7124.   DOI   ScienceOn
3 Bursch, W., Ellinger, A., Kienzl, H., Torok, L., Pandey, S., Sikorska, M., Walker, R., and Hermann, R.S. (1996). Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture: the role of autophagy. Carcinogenesis 17, 1595-1607.   DOI   ScienceOn
4 de Medina, P., Payre, B., Boubekeur, N., Bertrand-Michel, J., Terce, F., Silvente-Poirot, S., and Poirot, M. (2009). Ligands of the antiestrogen- binding site induce active cell death and autophagy in human breast cancer cells through the modulation of cholesterol metabolism. Cell Death Differ. 16, 1372-1384.   DOI   ScienceOn
5 Deli, T., and Csernoch, L. (2008). Extracellular ATP and cancer: an overview with special reference to P2 purinergic receptors. Pathol. Oncol. Res. 14, 219-231.   DOI
6 Dixon, C.J., Bowler, W.B., Fleetwood, P., Ginty, A.F., Gallagher, J.A., and Carron, J.A. (1997). Extracellular nucleotides stimulate proliferation in MCF-7 breast cancer cells via P2-purinoceptors. Br. J. Cancer 75, 34-39.   DOI   ScienceOn
7 Dorsey, F.C., Steeves, M.A., Prater, S.M., Schroter, T., and Cleveland, J.L. (2009). Monitoring the autophagy pathway in cancer. Methods Enzymol. 453, 251-271.   DOI   ScienceOn
8 Egan, D., Kim, J., Shaw, R.J., and Guan, K.L. (2011). The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy 7, 643-644.   DOI
9 Eskelinen, E.L. (2008). New insights into the mechanisms of macroautophagy in mammalian cells. Int. Rev. Cell Mol. Biol. 266, 207-247.   DOI   ScienceOn
10 Fabian, C.J., and Kimler, B.F. (2005). Selective estrogen-receptor modulators for primary prevention of breast cancer. J. Clin. Oncol. 23, 1644-1655.   DOI   ScienceOn
11 Fisher, B., Costantino, J.P., Wickerham, D.L., Redmond, C.K., Kavanah, M., Cronin, W.M., Vogel, V., Robidoux, A., Dimitrov, N., Atkins, J., et al. (1998). Tamoxifen for prevention of breast cancer: report of the national surgical adjuvant breast and bowel project P-1 study. J. Natl. Cancer Inst. 90, 1371-1388.   DOI   ScienceOn
12 Hopfner, M., Lemmer, K., Jansen, A., Hanski, C., Riecken, E.O., Gavish, M., Mann, B., Buhr, H., Glassmeier, G., and Scherubl, H. (1998). Expression of functional P2-purinergic receptors in primary cultures of human colorectal carcinoma cells. Biochem. Biophys. Res. Commun. 251, 811-817.   DOI   ScienceOn
13 Gizzo, S., Saccardi, C., Patrelli, T.S., Berretta, R., Capobianco, G., Di Gangi, S., Vacilotto, A., Bertocco, A., Noventa, M., Ancona, E., et al. (2013). Update on raloxifene: mechanism of action, clinical efficacy, adverse effects, and contraindications. Obstet. Gynecol. Surv. 68, 467-481.   DOI   ScienceOn
14 He, C., and Klionsky, D.J. (2009). Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43, 67-93.   DOI   ScienceOn
15 Hippert, M.M., O'Toole, P.S., and Thorburn, A. (2006). Autophagy in cancer: good, bad, or both? Cancer Res. 66, 9349-9351.   DOI   ScienceOn
16 Hwang, J.J., Kim, H.N., Kim, J., Cho, D.H., Kim, M.J., Kim, Y.S., Kim, Y., Park, S.J., and Koh, J.Y. (2010). Zinc(II) ion mediates tamoxifen-induced autophagy and cell death in MCF-7 breast cancer cell line. Biometals 23, 997-1013.   DOI   ScienceOn
17 Jung, C.H., Ro, S.H., Cao, J., Otto, N.M., and Kim, D.H. (2010). mTOR regulation of autophagy. FEBS Lett. 584, 1287-1295.   DOI   ScienceOn
18 Kanzawa, T., Zhang, L., Xiao, L., Germano, I.M., Kondo, Y., and Kondo, S. (2005). Arsenic trioxide induces autophagic cell death in malignant glioma cells by upregulation of mitochondrial cell death protein BNIP3. Oncogene 24, 980-991.   DOI   ScienceOn
19 Khan, J.A., Forouhar, F., Tao, X., and Tong, L. (2007). Nicotinamide adenine dinucleotide metabolism as an attractive target for drug discovery. Expert Opin. Ther. Targets 11, 695-705.   DOI   ScienceOn
20 Kim, J., Kundu, M., Viollet, B., and Guan, K.L. (2011). AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13, 132-141.   DOI   ScienceOn
21 Lee, J.W., Park, S., Takahashi, Y., and Wang, H.G. (2010). The association of AMPK with ULK1 regulates autophagy. PLoS One 5, e15394.   DOI   ScienceOn
22 Levine, B. (2007). Cell biology: autophagy and cancer. Nature 446, 745-747.   DOI   ScienceOn
23 Levine, B., and Kroemer, G. (2008). Autophagy in the pathogenesis of disease. Cell 132, 27-42.   DOI   ScienceOn
24 Liang, X.H., Jackson, S., Seaman, M., Brown, K., Kempkes, B., Hibshoosh, H., and Levine, B. (1999). Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402, 672-676.   DOI   ScienceOn
25 Liu, Y.L., Yang, P.M., Shun, C.T., Wu, M.S., Weng, J.R., and Chen, C.C. (2010). Autophagy potentiates the anti-cancer effects of the histone deacetylase inhibitors in hepatocellular carcinoma. Autophagy 6, 1057-1065.   DOI
26 Maiuri, M.C., Zalckvar, E., Kimchi, A., and Kroemer, G. (2007). Selfeating and self-killing: crosstalk between autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 8, 741-752.
27 Mizushima, N., Yoshimori, T., and Levine, B. (2010). Methods in mammalian autophagy research. Cell 140, 313-326.   DOI   ScienceOn
28 Morselli, E., Galluzzi, L., Kepp, O., Vicencio, J.M., Criollo, A., Maiuri, M.C., and Kroemer, G. (2009). Anti- and pro-tumor functions of autophagy. Biochim. Biophys. Acta 1793, 1524-1532.   DOI   ScienceOn
29 Powles, T. (2011). Prevention of breast cancer by newer SERMs in the future. Recent Results Cancer Res. 188, 141-145.
30 Olivier, S., Close, P., Castermans, E., de Leval, L., Tabruyn, S., Chariot, A., Malaise, M., Merville, M.P., Bours, V., and Franchimont, N. (2006). Raloxifene-induced myeloma cell apoptosis: a study of nuclear factor-kappaB inhibition and gene expression signature. Mol. Pharmacol. 69, 1615-1623.   DOI   ScienceOn
31 Rossi, V., Bellastella, G., De Rosa, C., Abbondanza, C., Visconti, D., Maione, L., Chieffi, P., Della Ragione, F., Prezioso, D., De Bellis, A., et al. (2011). Raloxifene induces cell death and inhibits proliferation through multiple signaling pathways in prostate cancer cells expressing different levels of estrogen receptor alpha and beta. J. Cell. Physiol. 226, 1334-1339.   DOI   ScienceOn
32 Ryter, S.W., Cloonan, S.M., and Choi, A.M. (2013). Autophagy: a critical regulator of cellular metabolism and homeostasis. Mol. Cells 36, 7-16.   DOI
33 Shibata, M.A., Morimoto, J., Shibata, E., Kurose, H., Akamatsu, K., Li, Z.L., Kusakabe, M., Ohmichi, M., and Otsuki, Y. (2010). Raloxifene inhibits tumor growth and lymph node metastasis in a xenograft model of metastatic mammary cancer. BMC Cancer 10, 566.   DOI   ScienceOn
34 Takeuchi, H., Kondo, Y., Fujiwara, K., Kanzawa, T., Aoki, H., Mills, G.B., and Kondo, S. (2005). Synergistic augmentation of rapamycin- induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors. Cancer Res. 65, 3336-3346.   DOI
35 Taurin, S., Allen, K.M., Scandlyn, M.J., and Rosengren, R.J. (2013). Raloxifene reduces triple-negative breast cancer tumor growth and decreases EGFR expression. Int. J. Oncol. 43, 785-792.   DOI
36 Yang, Z., and Klionsky, D.J. (2010). Mammalian autophagy: core molecular machinery and signaling regulation. Curr. Opin. Cell Biol. 22, 124-131.   DOI   ScienceOn
37 Wagstaff, S.C., Bowler, W.B., Gallagher, J.A., and Hipskind, R.A. (2000). Extracellular ATP activates multiple signalling pathways and potentiates growth factor-induced c-fos gene expression in MCF-7 breast cancer cells. Carcinogenesis 21, 2175-2181.   DOI   ScienceOn
38 Wang, Q., Wang, L., Feng, Y.H., Li, X., Zeng, R., and Gorodeski, G.I. (2004). P2X7 receptor-mediated apoptosis of human cervical epithelial cells. Am. J. Physiol. Cell Physiol. 287, C1349-1358.   DOI   ScienceOn
39 White, N., and Burnstock, G. (2006). P2 receptors and cancer. Trends Pharmacol. Sci. 27, 211-217.   DOI   ScienceOn