• Title/Summary/Keyword: PAHs (polycyclic aromatic hydrocarbons)

Search Result 383, Processing Time 0.032 seconds

Temporal Variation of Particulate Matters and PAHs in Seoul (서울지역에서 대기 중 분진 및 입자상 PAHs 농도의 시간적 분포 특성)

  • 송은주;이유진;최지예;이지이;김용표
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.341-342
    • /
    • 2003
  • 대기 중의 부유분진 (suspended particulate matters)은 대기오염을 측정하는 일반지표 중의 한 항목으로, 보통 대기의 단위부피당 질량으로 그 오염정도를 판단하고 있다. 대기 중 부유분진은 입경별 농도분포에 따라 통해 오염원의 특성을 파악할 수 있고, 여러 오염원에서 배출되어지는 여러 화학물질들로 구성되어 있기 때문에 인체 위해성 측면에서 많은 관심의 대상이 되어 왔다. 또한 다환방향족탄화수소 (Polycyclic Aromatic Hydrocarbons, PAHs)는 환경에 존재하는 중요한 발암물질이자 돌연변이 유도체이다.(중략)

  • PDF

Analysis of Polycyclic Aromatic Hydrocarbon Content in Coffee Beans with Different Preparation Method (전처리 방법에 따른 커피원두 중 polycyclic aromatic hydrocarbons 함량 분석)

  • Nam, He-Jung;Seo, Il-Won;Shin, Han-Seung
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.157-161
    • /
    • 2009
  • This paper proposes an analytical method for determining amounts of polycyclic aromatic hydrocarbons (PAHs; benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[a,h]anthracene, benzo[g,h,i] perylene) in coffees beans. Soxhlet extraction and liquid/liquid extraction were tested for the quantification of seven PAHs. Soxhlet extraction was followed by cyclohexane extraction and used a silica cartridge. Liquid/liquid extraction was followed by n-hexane extraction and utilized a florisil cartridge. The extracts were analyzed by HPLC-fluorescence detection (FLD) with a Supelcosil LC-PAH column. The PAH recoveries ranged from 78.68 to 96.28% for the liquid/liquid extraction, and from 67.47 to 84.60% for the Soxhlet extraction.

Hydrogenation of Polycyclic Aromatic Hydrocarbons Over Pt/Kieselguhr Catalysts in a Trickle Bed Reactor (Trickle Bed Reactor에서 Pt/Kieselguhr 촉매를 이용한 다환방향족 탄화수소 수소화 반응)

  • Seung Kyo, Oh;Seohyeon, Oh;Gi Bo, Han;Byunghun, Jeong;Jong-Ki, Jeon
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.331-338
    • /
    • 2022
  • The objective of this study is to prepare bead-type and pellet-type Pt (1 wt%)/Kieselguhr catalysts as hydrogenation catalysts for the polycyclic aromatic hydrocarbons (PAHs) included in pyrolysis fuel oil (PFO). The optimal reaction temperature to maximize the yield of saturated cyclic hydrocarbons during the PFO-cut hydrogenation reaction in a trickle bed reactor was determined to be 250 ℃. A hydrogen/PFO-cut flow rate ratio of 1800 was found to maximize 1-ring saturated cyclic compounds. The yield of saturated cyclic compound increased as the space velocity (LHSV) of PFO-cut decreased. The difference in hydrogenation reaction performance between the pellet catalyst and the bead catalyst was negligible. However, the catalyst impregnated by Pt after molding the Kieselguhr support (AI catalyst) showed higher hydrogenation activity than the catalyst molded after Pt impregnation on the Kieselguhr powder (BI catalyst), which was a common phenomenon in both the pellet catalysts and bead catalysts. This may be due to a higher number of active sites over the AI catalyst compared to the BI catalyst. It was confirmed that the pellet catalyst prepared by the AI method had the best reaction activity of the prepared catalysts in this study. The majority of the PFO-cut hydrogenation products were cyclic hydrocarbons ranging from C8 to C15, and C11 cyclic hydrocarbons had the highest distribution. It was confirmed that both a cracking reaction and hydrogenation occurred, which shifted the carbon number distribution towards light hydrocarbons.

Determination of polycyclic aromatic hydrocarbons in processed foods (가공식품 중 다환방향족탄화수소 분석)

  • Hu, Soo-Jung;Jin, Sun-Hee;Lee, Kwang-Ho;Choi, Dong-Mi
    • Analytical Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.196-204
    • /
    • 2010
  • In this study, the following concentrations of some PAHs (Polycyclic Aromatic Hydrocarbons) were investigated; [benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, dibenzo(a,h)anthracene, benzo(g,h,i)perylene, indeno(1,2,3-c,d)pyrene] in processed foods (n=165) and cooked meats (n=45) and established the analytical method by characteristics of processed foods. The methodology involved extraction (alkali digestion, liquid-liquid extraction, microwave extraction), clean-up on Sep-Pak Florisil Cartridges and determination by HPLC/FLD (High Performance Liquid Chromatography/Fluorescence Detector). The recovery of overall method for 8 PAHs spiked into these products ranged from 92 to 103%. The mean level of detected foods was found to be benzo(b)fluoranthene $0.9\;{\mu}g/kg$ in smoked salmon, benzo(b)fluoranthene $1.0\;{\mu}g/kg$, benzo(k)fluoranthene $0.3\;{\mu}g/kg$, benzo(a)pyrene $0.9\;{\mu}g/kg$ in dried banana, benzo(b)fluoranthene $0.2\;{\mu}g/kg$, benzo(k)fluoranthene $0.1\;{\mu}g/kg$, benzo(a)pyrene $0.2\;{\mu}g/kg$ in smoked chicken, benzo(b)fluoranthene $1.3\;{\mu}g/kg$, benzo(k)fluoranthene $0.3\;{\mu}g/kg$, benzo(a)pyrene $0.9\;{\mu}g/kg$ in charcoal grilled pork, respectively.

Preliminary Investigation into Urinary 1-Hydroxypyrene as a Biomarker for Polycyclic Aromatic Hydrocarbons exposure among Charcoal Workers in Ogun and Oyo States, Nigeria

  • Olujimi, O.O.;Ogunseye, O.O.;Oladiran, K.O.;Ajakore, S.D.
    • Safety and Health at Work
    • /
    • v.9 no.4
    • /
    • pp.416-420
    • /
    • 2018
  • Background: Urinary 1-hydroxypyrene (1-OHP) has been widely used as a biomarker of polycyclic aromatic hydrocarbons (PAHs) in occupationally exposed workers. The objective of this study is to investigate the concentration of urinary 1-OHP among charcoal workers as subjects and non-charcoal workers as controls. Methods: Early morning urine samples were collected from 68 persons (25 charcoal workers in Igbo-Ora, 20 charcoal workers in Alabata, and 23 non-charcoal workers) who volunteered to participate in this study. 1-OHP determination in urine samples was carried out using high performance liquid chromatography after hydrolysis. Descriptive and inferential statistics were used for data analysis at p < 0.05. Results: The mean urinary 1-OHP concentration (${\mu}mol/mol$ creatinine) among charcoal workers at Igbo-Ora and Alabata and non-charcoal workers were $2.22{\pm}1.27$, $1.32{\pm}0.65$, and $0.32{\pm}0.26$ (p < 0.01). There existed a relationship between respondent type and 1-OHP concentration. Charcoal workers were 3.14 times more at risk of having 1-OHP concentrations that exceed the American Conference of Governmental Industrial Hygienists guideline of $0.49{\mu}mol/mol$ creatinine than non-charcoal workers (relative risk = 3.14, 95% confidence interval: 1.7-5.8, p < 0.01). Conclusion: Charcoal workers are exposed to PAHs during charcoal production and are at risk of experiencing deleterious effects of PAH exposure. Routine air quality assessment should be carried out in communities where charcoal production takes place. Assessment of urinary 1-OHP concentration and use of personal protective equipment should also be encouraged among charcoal workers.

Pretreatment of Fish for the determination of polycyclic aromatic hydrocarbons using alkali digestion (알칼리분해를 이용한 어류 중 다환방향족탄화수소의 전처리방법)

  • Hu, Soojung;Lee, Hyomin;Chae, Youngzoo;Yoo, Eun-Ah
    • Analytical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.403-409
    • /
    • 2005
  • Polycyclic Aromatic Hydrocarbons(PAHs) contamination arises from several sources including processing of food(smoking, direct drying, cooking) and environmental contamination of air, water, or soil, the later being considered as the most important. In this study, to establish the analytical method for some PAHs[benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, dibenzo(a,h)anthracene, benzo(g,h,i)perylene, indeno(1,2,3-c,d)pyrene] in fish, alkali digestion time, extraction solvents, elution volume of florisil cartridge for clean-up have been optimized. The methodology involved saponification and extraction with n-hexane, clean-up on Sep-Pak florisil cartridges and determination by HPLC/FLD(High Performance Liquid Chromatography/Fluorescence Detector). Overall method recoveries for 8 PAHs spiked into these products ranged from 90 to 106%.

Polycyclic Aromatic Hydrocarbons (PAHs) in Korean Soil: Distribution by Depth and Land Use (토양깊이 및 토지이용에 따른 다핵방향족탄화수소 (PAHs)의 토양 중 분포)

  • Nam, Jae-Jak;Hong, Suk-Young;Lee, Jong-Sik;So, Kyu-Ho;Lee, Sang-Hak
    • Environmental Analysis Health and Toxicology
    • /
    • v.22 no.2 s.57
    • /
    • pp.129-135
    • /
    • 2007
  • Polycyclic aromatic hydrocarbons(PAHs) have been analyzed to assess vertical distribution of them with different land uses. The soils were collected from three layers; surface $(0{\sim}5cm)$, intermediate $(6{\sim}10cm)$, and deep $(11{\sim}15cm)$ layer, respectively considering land use; paddy, upland, and mountain in each site. Total 89 samples of soil from 10 sites were analyzed. Overall mean of ${\sum}PAHs$ were 137 (range $8.87{\sim}625{\mu}g\;kg^{-1}$), 203 (range $16.5{\sim}645{\mu}g\;kg^{-1}$), and $83.4{\mu}g\;kg^{-1}$ (range $6.65{\sim}667{\mu}g\;kg^{-1}$) for paddy, upland, and mountain soil, respectively. The dominant PAHs were fluoroanthene/benzo(b)fluoroanthene>pyrene>indeno(1, 2, 3-cd) pyrene in paddy, fluoroanthene/pyrene>benzo(b)fluoroanthene>chrysene in upland, and benzo(b)fluoroanthene>pyrene>chrysene in mountain soil, whereas the profile was quite similar for each other except that indeno(1, 2, 3-cd)pyrene and benzo(ghi)perylene are relatively higher in the paddy soils. Although the concentration gradient by depth was not observed in the paddy and upland soils because perturbation of soil layer by tillage, significant decrease was in the deep layer relative to the surface and intermediate layer. However, the concentration gradient of PAHs by soil depth was clearly shown in mountain soil without experiencing disturbance of tillage.

Distribution of Polycyclic Aromatic Hydrocarbons (PAHs) in Surface Sediments inside Songsanpo and Seogwipo Harbors of Jeju Island, Korea

  • Moon Sang-Hee;Lee Young-Don;Lee Min-Gyu;Kam Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.14 no.2
    • /
    • pp.105-119
    • /
    • 2005
  • The surface sediments inside Songsanpo and Seogwipo Harbors, major harbors of Jeju Island, were collected three times (June, September and December, 2001) and analyzed for 16 polycyclic aromatic hydrocarbons (PAHs) recommended by US-EPA as priority pollutants to assess their distribution levels and their biological effects on the marine organisms, and to suggest their possible origins. The concentrations of total PAHs inside Songsanpo and Seogwipo Harbors ranged from 41 to 288 ng/g on a dry weight basis with a mean value of 121 ng/g and from 14 to 268 ng/g with a mean value of 119 ng/g, respectively, and the levels were low as compared with those in other areas of the world. The sedimentary PAHs may be correlated with organic carbon and mud content to some extent. Based on comparisons of individual and total concentrations with effects-based sediment quality guidelines, the potential for the biological effects on the marine organisms were expected to be very low. From the examinations of the four PAH origin indices, such as LMW /HMW (low molecular weight 2-3 ring PAHs over high molecular weight 4-6 ring PAHs), phenanthrene/anthracene ratio, fluoranthene/pyrene ratio, chrysene/benzo[a]anthracene ratio, it can be concluded that the sediment PAH contaminations were ascribed to both of pyrolytic and petrogenic origins.

Distribution Characteristics and Source Estimation of Polycyclic Aromatic Hydrocarbons in PM-10 from Gwangju (광주지역 미세먼지(PM-10)의 다환방향족탄화수소 분포 특성 및 발생원 추정)

  • Seung-Ho Kim;Byung-Hoon Park;Min-cheol Cho;Hye-Yun Na;Won-Hyung Park;Gwang-yeob Seo;Se-Heang Lee;Hung-Soo Joo
    • Journal of Environmental Science International
    • /
    • v.32 no.4
    • /
    • pp.243-257
    • /
    • 2023
  • This study was conducted to investigate the distribution characteristics, source identification, and health risk of polycyclic aromatic hydrocarbons (PAHs) present in particulate matter 10 (PM-10), in Gwangju. PM-10 samples were collected from September 2021 to August 2022 from three sampling sites, one located in each of the following areas: green, residential, and industrial. The average concentrations of PAHs were found to be higher in the industrial area (9.75±6.51 ng/㎥) than in the green (6.90±2.41 ng/㎥) and residential (6.74±2.38 ng/㎥) areas. Throughout the year and across all sites, five-ring PAHs accounted for the largest proportion (29.8-34.5%) of all PAHs. The concentrations of PAHs showed distinct seasonal variations, with the highest concentration observed in winter, followed by autumn, spring, and summer. Source apportionment analyses were performed using diagnostic ratios and principal component analyses, which indicated that coal/biomass combustion and vehicle emissions were the primary sources of PAHs in PM-10. The incremental lifetime cancer risk was estimated for all age groups at all sampling sites, and the results revealed a much lower risk level than the standard acceptable risk level (1×10-6).