DOI QR코드

DOI QR Code

Trickle Bed Reactor에서 Pt/Kieselguhr 촉매를 이용한 다환방향족 탄화수소 수소화 반응

Hydrogenation of Polycyclic Aromatic Hydrocarbons Over Pt/Kieselguhr Catalysts in a Trickle Bed Reactor

  • Seung Kyo, Oh (Department of Chemical Engineering, Kongju National University) ;
  • Seohyeon, Oh (Department of Chemical Engineering, Kongju National University) ;
  • Gi Bo, Han (Institute for Advanced Engineering) ;
  • Byunghun, Jeong (Agency for Defense Development) ;
  • Jong-Ki, Jeon (Department of Chemical Engineering, Kongju National University)
  • 투고 : 2022.11.20
  • 심사 : 2022.12.06
  • 발행 : 2022.12.30

초록

본 연구의 목적은 열분해연료유(pyrolysis fuel oil, PFO)에 포함된 다환 방향족 탄화수소(polycyclic aromatic hydro, PAHs) 수소화 반응용 촉매로서 Pt(1wt%)/Kieselguhr 비드 촉매 및 펠렛 촉매를 제조하는 것이다. Trickle-bed 반응기에서 PFO-cut 수소화 반응을 통한 포화 고리 화합물(saturated cyclic compound)의 수율을 최대화하기 위한 최적의 반응 온도 및 수소/PFO-cut 유량비는 각각 250℃와 1800으로 결정하였다. PFO-cut의 공간속도(LHSV)가 감소할수록 포화 고리 화합물의 수율이 증가하였다. 펠렛 촉매와 비드 촉매의 수소화 반응 성능 차이는 크지 않았다. Kieselguhr 지지체를 성형한 후에 Pt를 담지한 촉매(AI 촉매)가 kieselguhr 분말에 Pt를 담지한 후에 성형한 촉매(BI 촉매)에 비해 수소화 활성이 높았으며, 이러한 경향은 펠릿 촉매와 비드 촉매에서 공통적으로 나타났다. 이는 AI 촉매의 Pt 활성점 수가 BI 촉매 보다 많기 때문이다. 본 연구에서 제조한 촉매 중에서 AI법으로 제조된 펠렛 촉매가 제조된 촉매 중 반응 활성이 가장 우수한 것을 확인하였다. PFO-cut 수소화 반응 생성물 중 C8~C15 범위의 고리 화합물이 대부분을 차지했으며, C11 고리 화합물의 분포도가 가장 높았다. 수소화 반응과 더불어서 분해 반응도 함께 촉진되어 생성물의 탄소수 분포가 경질 탄화수소 쪽으로 이동함을 확인하였다.

The objective of this study is to prepare bead-type and pellet-type Pt (1 wt%)/Kieselguhr catalysts as hydrogenation catalysts for the polycyclic aromatic hydrocarbons (PAHs) included in pyrolysis fuel oil (PFO). The optimal reaction temperature to maximize the yield of saturated cyclic hydrocarbons during the PFO-cut hydrogenation reaction in a trickle bed reactor was determined to be 250 ℃. A hydrogen/PFO-cut flow rate ratio of 1800 was found to maximize 1-ring saturated cyclic compounds. The yield of saturated cyclic compound increased as the space velocity (LHSV) of PFO-cut decreased. The difference in hydrogenation reaction performance between the pellet catalyst and the bead catalyst was negligible. However, the catalyst impregnated by Pt after molding the Kieselguhr support (AI catalyst) showed higher hydrogenation activity than the catalyst molded after Pt impregnation on the Kieselguhr powder (BI catalyst), which was a common phenomenon in both the pellet catalysts and bead catalysts. This may be due to a higher number of active sites over the AI catalyst compared to the BI catalyst. It was confirmed that the pellet catalyst prepared by the AI method had the best reaction activity of the prepared catalysts in this study. The majority of the PFO-cut hydrogenation products were cyclic hydrocarbons ranging from C8 to C15, and C11 cyclic hydrocarbons had the highest distribution. It was confirmed that both a cracking reaction and hydrogenation occurred, which shifted the carbon number distribution towards light hydrocarbons.

키워드

과제정보

This work was supported by the research grant of Agency for Defense Development of Korea. This research was also supported by Basic Science Research Program through the National Research Foundation of Korea (NRF-2020R1F1A1071614).

참고문헌

  1. Korea National Oil Corporation, 2022 Oil Market Outlook and Key Variables Analysis (2022) 
  2. Choi, Y., Lee, J., Shin, J., Lee, S., Kim, D., and Lee, J. K., "Selective Hydroconversion of Naphthalenes into Light Alkyl-aromatic Hydrocarbons," Appl. Catal. A: Gen., 492, 140-150 (2015).  https://doi.org/10.1016/j.apcata.2014.12.001
  3. Upare, D. P., Rao, R. N., Yoon, S., and Lee, C. W., "Upgrading of Light Cycle Oil by Partial Hydrogenation and Selective Ring Opening over an Iridium Bifunctional Catalyst," Res. Chem. Intermed., 37(9), 1293-1303 (2011).  https://doi.org/10.1007/s11164-011-0397-5
  4. Lee, J. and Park, S.-K., "Synthesis of Carbon Materials from PFO, Byproducts of Naphtha Cracking Process," Appl. Chem. Eng., 22(5), 495-500 (2011). 
  5. Jung, M.-J., Jung, J.-Y., Lee, D., and Lee, Y.-S., "A New Pitch Reforming from Pyrolysis Fuel Oil by UV Irradiation," J. Ind. Eng. Chem., 22, 70-74 (2015).  https://doi.org/10.1016/j.jiec.2014.06.026
  6. Kim, J, G., Liu, F., Lee, C.-W., Lee, Y.-S., and Im, J, S., "Boron-doped Carbon Prepared from PFO as a Lithium-ion Battery Anode," Solid State Sci., 34, 38-42 (2014).  https://doi.org/10.1016/j.solidstatesciences.2014.05.005
  7. Nakagawa, Y., Tamura, M., and Tomishige, K., "Recent Development of Production Technology of Diesel- and Jet-fuel-range Hydrocarbons from Inedible Biomass," Fuel Process. Technol., 193, 404-442 (2019).  https://doi.org/10.1016/j.fuproc.2019.05.028
  8. Jia, T., Gong, S., Pan, L., Deng, C. Zou, J.-J., and Zhang, X., "Impact of Deep Hydrogenation on Jet Fuel Oxidation and Deposition," Fuel., 264, 116843 (2020). 
  9. Bruno, T. J., Edwards, T., Shafer, L. M., and Bilingsley, M., "Extent and Impacts of Hydrocarbon Fuel Compositional Variability for Aerospace Propulsion Systems," Paper No. 6824, 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Nashvile, TN (Jul. 2010). 
  10. Dewitt, M. J., West, Z., Zabarnick, S., Shafer, L., Striebich, R., Higgins, A., and Edwards, T., "Effect of Aromatics on the Thermal-Oxidative Stability of Synthetic Paraffinic Kerosene," Energy Fuels., 28(6), 3696-3703 (2014).  https://doi.org/10.1021/ef500456e
  11. Roan, M. A., and Boehman, A. L., "The Effect of Fuel Composition and Dissolved Oxygen on Deposit Formation from Potential JP-900 Basestocks," Energy Fuels., 18(3), 835-843 (2004).  https://doi.org/10.1021/ef034050b
  12. Yang, J., Xin, Z., He, Q. S., Corscadden, K., and Niu, H., "An Overview on Performance Characteristics of Bio-jet Fuels," Fuel., 237, 916-936 (2019).  https://doi.org/10.1016/j.fuel.2018.10.079
  13. Bi, P., Wang, J., Zhang, Y., Jiang, P., Wu, X., Liu, J., Xue, H., Wang, T., and Li, Q., "From Lignin to Cycloparaffins and Aromatics: Directional Synthesis of Jet and Diesel Fuel Range Biofuels using Biomass," Bioresour. Technol., 183, 10-17 (2015).  https://doi.org/10.1016/j.biortech.2015.02.023
  14. Upare, D. P., Park, S., Kim, M. S., Jeon, Y.-P., Kim, J., Lee, D., Lee, J., Chang, H., Choi, S., Choi, W., Park, Y.-K., and Lee, C. W., "Selective Hydrocracking of Pyrolysis Fuel Oil into Benzene, Toluene and Xylene over CoMo/beta Zeolite Catalyst," J. Ind. Eng. Chem., 46, 356-363 (2017).  https://doi.org/10.1016/j.jiec.2016.11.004
  15. Peng, Y., Geng, Z., Zhao, S., Wang, L., Li, H., Wang, X., Zheng, X., Zhu, J., Li, Z., Si, R., and Zeng, J., "Pt Single Atoms Embedded in the Surface of Ni Nanocrystals as Highly Active Catalysts for Selective Hydrogenation of Nitro Compounds," Nano Lett., 18(6), 3785-3791 (2018).  https://doi.org/10.1021/acs.nanolett.8b01059
  16. Oh, S. K., Ku, H., Han, G. B., Jeong, B., and Jeon, J.-K., "Hydrogenation of polycyclic aromatic hydrocarbons over Pt/γ-Al2O3 catalysts in a trickle bed reactor," Catal. Today., in press (2022). 
  17. Jeon, J.-K., Yim, J.-H., and Park, Y.-K., "C9-aldehyde hydrogenation over nickel/kieselguhr catalysts in trickle bed reactor," Chem. Eng. J., 140(1), 555-561 (2008).  https://doi.org/10.1016/j.cej.2007.12.004
  18. Sirous Rezaei, P., Shafaghat, H., Daud, W. M. A. W., "Suppression of coke formation and enhancement of aromatic hydrocarbon production in catalytic fast pyrolysis of cellulose over different zeolites: effects of pore structure and acidity," RSC Adv., 5(80), 65408-65414 (2015).  https://doi.org/10.1039/C5RA11332F
  19. Oh, S. K., Seong, M., and Jeon, J.-K., "A study on Cu-based Catalysts for Oxygen Removal in Nitrogen Purification System," Clean Technol., 27(1), 9-16 (2021).  https://doi.org/10.7464/KSCT.2021.27.1.9
  20. Hassan, F., Al-Duri, B., and Wood, J., "Effect of supercritical conditions upon catalyst deactivation in the hydrogenation of naphthalene," Chem. Eng. J., 207-208, 133-141 (2012).  https://doi.org/10.1016/j.cej.2012.06.031
  21. Kirumakki, S. R., Shpeizer, B. G., Sagar, G. V., Chary, K. V. R., and Clearfield, A., "Hydrogenation of Naphthalene over NiO/SiO2-Al2O3 catalysts: Structure-activity correlation," J. Catal., 242(2), 319-331 (2006). https://doi.org/10.1016/j.jcat.2006.06.014