• Title/Summary/Keyword: PA(Power Amplifier)

Search Result 102, Processing Time 0.024 seconds

Highly Linear 2-Stage Doherty Power Amplifier Using GaN MMIC

  • Jee, Seunghoon;Lee, Juyeon;Kim, Seokhyeon;Park, Yunsik;Kim, Bumman
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.4
    • /
    • pp.399-404
    • /
    • 2014
  • A power amplifier (PA) for a femto-cell base station should be highly efficient, linear and small. The efficiency for amplification of a high peak-to-average power ratio (PAPR) signal was improved by designing an asymmetric Doherty PA (DPA). The linearity was improved by applying third-order inter-modulation (IM3) cancellation method. A small size is achieved by designing the DPA using GaN MMIC process. The implemented 2-stage DPA delivers a power-added efficiency (PAE) of 38.6% and a gain of 33.4 dB with an average power of 34.2 dBm for a 7.2 dB PAPR 10 MHz bandwidth LTE signal at 2.14 GHz.

High Power W-band Power Amplifier using GaN/Si-based 60nm process (GaN/Si 기반 60nm 공정을 이용한 고출력 W대역 전력증폭기)

  • Hwang, Ji-Hye;Kim, Ki-Jin;Kim, Wan-Sik;Han, Jae-Sub;Kim, Min-Gi;Kang, Bong-Mo;Kim, Ki-chul;Choi, Jeung-Won;Park, Ju-man
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.67-72
    • /
    • 2022
  • This study presents the design of power amplifier (PA) in 60 nm GaN/Si HEMT technology. A customized transistor model enables the designing circuits operating at W-band. The all matching network of the PA was composed of equivalent transformer circuit to reduce matching loss. And then, equivalent transformer is several advantages without any additional inductive devices so that a wideband power characteristic can be achieved. The designed die area is 3900 ㎛ × 2300 ㎛. The designed results at center frequency achieved the small signal gain of 15.9 dB, the saturated output power (Psat) of 29.9 dBm, and the power added efficiency (PAE) of 24.2% at the supply voltage of 12 V.

Dual-Band Class-F Power Amplifier based on dual-band transmission-lines (이중 대역 전송선로를 활용한 이중 대역 F급 전력 증폭기 개발)

  • Lee, Chang-Min;Park, Young-Cheol
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.4
    • /
    • pp.31-37
    • /
    • 2010
  • In this paper, highly efficient dual-band class-F power amplifiers(PAs) for cellular and WLAN bands are suggested and implemented. For the first step, single-band class-F amplifiers at 840MHz, 2.4GHz are designed using commercial E-pHEMT FETs. The performance of two single band PAs are as much as 81.2% of efficiency with the output power of 24.4dBm with 840MHz PA and 93.5% of efficiency with 22.4dBm from the 2.4GHz. For the dual-band class-F PA, the harmonic controlling circuit with ideal SPDT switch was suggested. The length of transmission line is variable by a SPDT switch. As a results, the operation in 840MHz showed the peak efficiency of 60.5% with 23.5dBm, while in 2.4GHz mode the efficiency was 50.9% with the output power of 19.62dBm. Besides, it is shown that the harmonic controller of class-F above 2Ghz could be implemented on the low cost FR-4 substrate.

Concurrent Dual-Band Class-E Power Amplifier Using a Multi-Harmonic Matching Network (Multi-Harmonic Matching Network을 이용한 동시-이중 대역 Class-E 전력 증폭기)

  • Park, Seung-Won;Jeon, Sanggeun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.4
    • /
    • pp.401-410
    • /
    • 2014
  • This paper presents a high-efficiency concurrent dual-band Class-E power amplifier(PA) that is based on a multi-harmonic matching network(MHMN). The proposed MHMN controls the impedance at 1.3 GHz, 2.1 GHz, and their second and third harmonics, respectively, by using transmission lines only rather than switches or lumped components. The dual-band Class-E PA is implemented using Avago ATF-50189 GaAs p-HEMT. The PA exhibits a measured output power of 27.1 dBm and 25.7 dBm, a power gain of 6.1 dB and 4.7 dB, and a drain efficiency of 71.2 % and 60.1 % at 1.3 GHz and 2.1 GHz, respectively.

A Design of Power Amplifier with Broadband and High Linearity for 4G Application in 0.11 μm CMOS Process (0.11 μm CMOS 공정을 이용한 4세대 이동통신용 광대역 고 선형 전력증폭기의 설계 및 구현)

  • Kim, Ki-Hyun;Ko, Jae-Yong;Nam, Sang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.1
    • /
    • pp.50-59
    • /
    • 2016
  • This work shows that the design and test results of a power amplifier(PA) with broadband and high linearity for 4G applications in $0.11{\mu}m$ CMOS process. A 1:2-transformer is designed for load impedance matching of PA and a inter-stage matching is implemented for a linearity. A designed PA achieves more than 27.3 dBm of linear output power and 26.1 % of power-added efficiency(PAE) under an adjacent channel leakage ratio(ACLR) of -30 dBc for a LTE 16-QAM 10 MHz signal with a carrier frequency range of 1.8 to 2.3 GHz.

W-Band Power Amplifier with Hybrid Bias Network Using 60-nm GaN pHMET Process (하이브리드 바이어스 네트워크가 적용된 W대역 60-nm GaN pHEMT 전력 증폭기)

  • Yoo, Jinho;Lee, Jaeyong;Jang, Seongjin;Jung, Hayeon;Kim, Kichul;Choi, Jeung Won;Park, Juman;Park, Changkun
    • Journal of IKEEE
    • /
    • v.26 no.1
    • /
    • pp.77-82
    • /
    • 2022
  • The effect of the bias network on the performance of the W-band power amplifier(PA) was investigated. The performances of the typical RC and radial stub networks were examined, and a hybrid network was proposed for W-band application and its performance was confirmed. To verify this, a W-band PA was designed using a 60-nm GaN pHEMT process. When hybrid networks were applied, the PA had improved stability in all frequency bands, secured about 9 dB of power gain at operating frequencies 87 GHz to 93 GHz, and the maximum PAE was found to be about 12.3% at output power of 26.7 dBm.

A Study on the Active Integrated Antenna (능동 집적 안테나에 관한 연구)

  • 이병무;윤영중
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.1
    • /
    • pp.19-25
    • /
    • 2002
  • This paper presents novel architectures for power amplifier (PA) relying on 3rd harmonic-tuning technique and dual feeding antenna structure for the isolation of the Tx and the Rx ports. Active integrated antenna (AIA) with power amplifier makes the problem of the isolation between the Tx and the Rx ports occur So, this paper suggests dual feeding and dual resonant structures of the AIA with PA are possible to obtain the high isolation between the Tx and the Rx signals. Dual resonant triangular microstrip antenna, which can replace power amplifier tuning circuit, with slots-loaded and characteristic of the isolation between the Tx and the Rx ports using inset microstrip line feeding and probe feeding methods is proposed and experimentally studied for the case of thin substrate.

Size Reduction of a Quasi Class-E High Power Amplifier Using Defected Ground Structure (결함 접지 구조를 이용한 유사 E급 전력 증폭기의 소형화)

  • Choi, Heung-Jae;Jeong, Yong-Chae;Lim, Jong-Sik;Jung, Young-Bae;Eom, Soon-Young;Kim, Chul-Dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.1
    • /
    • pp.61-68
    • /
    • 2010
  • In this work, a reduced size 20W quasi class-E Power Amplifier(PA) with defected ground structure load-network is presented for WCDMA base station application. Harmonic impedances required for the class E operation are satisfied by applying the dumbbell and the asymmetric spiral DGS. Open impedance for 2nd harmonic frequency which has the highest power and nearly short impedances for other higher order harmonics are provided by the proposed DGS load-network. The maximum Power Added Efficiency(PAE) of 70.2 % at the output power of 43.1 dBm with the saturated power gain of 12.7 dB is achieved by the proposed quasi class-E PA, which is comparable to the performance of the reference class-E PA. Total size of the proposed class-E PA is only $50{\times}50\;mm^2$ and much smaller than the conventional class-E PA that is loaded with a number of open stubs.

Analysis of Power Amplifier Nonlinear Response Based on Practical Circuit Parameters (회로 특성 파라미터에 근거한 전력 증폭기의 비선형 응답 특성)

  • Park, Yong-Kuk;Kim, Hyeong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.721-725
    • /
    • 2012
  • In this paper, a novel analysis on the nonlinear response of a power amplifier (PA) with the intermodulation distortion (IMD) asymmetry is proposed based on the mutislice behavioral model. The coefficients of the odd-order and even-order polynomial of that model are represented with the PA practical circuit parameters such as intercept points, gain and amplitudes of excitation inputs. We also develop the analytic expressions to distinguish baseband frequency effect from second harmonic effect on the IMD asymmetry. We also validate the derived analytic expressions through measurements.

Design and Implementation of a Linearizer Using the Feedforward Loop without Delay Lines (지연 선로가 없는 Feedforward Loop를 이용한 선형화기의 설계 및 제작)

  • 정승환;조경준;김완종;안창엽;김종헌
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.1
    • /
    • pp.116-123
    • /
    • 2000
  • This paper presents a linearizer using the feedforward loop which can be applied to PCS base-station applications. This linearizer used a IM amplifier and an auxiliary amplifier in order to remove delay lines used in the predistortor using the feedforward technique. The delay line in error loop is changed by the main power amplifier(PA) and the error amplifier is utilized to amplify the error signal which fed to the output of main amplifier. The linearizer was simulated by HP ADS ver 1.1 and fabricated on GML 1000 with thickness of 0.8 mm and dielectric constant of 3.2. Two-tone signals at 1.85 GHz and 1.851 GHz with -7dBm/tone from synthesizers are injected into the main PA. The main PA with a 27 dB gain and a $P_{1dB}$ of 29 dBm(two-tone) was utilized. The reduction of intermodulation distortion (IMD) is around 17 dB.

  • PDF