DOI QR코드

DOI QR Code

0.11 μm CMOS 공정을 이용한 4세대 이동통신용 광대역 고 선형 전력증폭기의 설계 및 구현

A Design of Power Amplifier with Broadband and High Linearity for 4G Application in 0.11 μm CMOS Process

  • 김기현 (서울대학교 뉴미디어연구소 & 전기컴퓨터공학과) ;
  • 고재용 (서울대학교 뉴미디어연구소 & 전기컴퓨터공학과) ;
  • 남상욱 (서울대학교 뉴미디어연구소 & 전기컴퓨터공학과)
  • Kim, Ki-Hyun (INMC & Department of Electronical and Computer Engineering, Seoul National University) ;
  • Ko, Jae-Yong (INMC & Department of Electronical and Computer Engineering, Seoul National University) ;
  • Nam, Sang-Wook (INMC & Department of Electronical and Computer Engineering, Seoul National University)
  • 투고 : 2015.10.20
  • 심사 : 2015.12.22
  • 발행 : 2016.01.31

초록

본 논문은 $0.11{\mu}m$ CMOS 공정을 이용한 4세대 통신용 광대역 고 선형 전력 증폭기의 설계와 구현에 관해 기술한다. 1:2 트랜스포머(transformer)를 사용하여 출력단 매칭을 구현하였고, 인터 스테이지(inter-stage) 매칭에서 선형성을 고려한 설계가 포함되었다. 1.8 GHz에서 2.3 GHz까지, 10 MHz의 대역폭을 가지는 LTE 16-QAM 신호를 이용하여 측정한 결과, 인접채널 누설 비(ACLR)가 -30 dBc 이하일 때 27.3 dBm 이상의 선형 출력 전력을 얻을 수 있었고, 같은 조건에서 입력 신호 전력을 고려한 효율(PAE)은 최소 26.1 %로 나타남을 확인하였다.

This work shows that the design and test results of a power amplifier(PA) with broadband and high linearity for 4G applications in $0.11{\mu}m$ CMOS process. A 1:2-transformer is designed for load impedance matching of PA and a inter-stage matching is implemented for a linearity. A designed PA achieves more than 27.3 dBm of linear output power and 26.1 % of power-added efficiency(PAE) under an adjacent channel leakage ratio(ACLR) of -30 dBc for a LTE 16-QAM 10 MHz signal with a carrier frequency range of 1.8 to 2.3 GHz.

키워드

참고문헌

  1. J. Boshi, J. Moon, C. Zhao, and B. Kim, "A 30.8-dBm wideband CMOS power amplifier with minimized supply fluctuation", IEEE Trans. Microw. Theory Tech., vol. 60, no. 6, pp. 1658-1666, Jun. 2012. https://doi.org/10.1109/TMTT.2012.2189142
  2. B. Francois, P. Reynaert, "Highly linear fully integrated wideband RF PA for LTE-advanced in 180-nm SOI", IEEE Trans. Microw. Theory Tech., vol. 63, no. 2, pp. 649-658, Feb. 2015. https://doi.org/10.1109/TMTT.2014.2380319
  3. S. Leuschner, J. -E. Mueller, and H. Klar, "A 1.8 GHz wide-band stacked-cascode CMOS power amplifier for W-CDMA application in 65 nm standard CMOS", in IEEE RFIC Symp., pp. 1-4, Jun. 2011.
  4. S. Pornpromlikit, J. Jeong, C. Presti, A. Scuderi, and P. Asbeck, "A watt-level stacked-FET linear power amplifier in siliconon-insulator CMOS", IEEE Trans. Microw. Theory Tech., vol. 58, no. 1, pp. 57-64, 2010. https://doi.org/10.1109/TMTT.2009.2036323
  5. S. Jin, M. Kwon, K. Moon, B. Park, and B. Kim, "Control of IMD asymmetry of CMOS power amplifier for broadband operation using wideband signal", IEEE Trans. Microw. Theory Tech., vol. 61, no. 10, pp. 3753-3762, Oct. 2012. Symp., pp. 1-4, Jun. 2011. https://doi.org/10.1109/TMTT.2013.2280116
  6. Y. Lee, S. Hong, "A dual-power-mode output matching network fordigitally modulated CMOS power amplifier", IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1570-1579, Apr. 2013. https://doi.org/10.1109/TMTT.2013.2246525
  7. J. Brinkhoff, A. E. Parker, "Effect of baseband impedance on FET intermodulation", IEEE Trans. Microw. Theory Tech., vol. 51, no. 3, pp. 1045-1051, Mar. 2003. https://doi.org/10.1109/TMTT.2003.808704
  8. B. Koo, Y. Na, and S. Hong, "Integrated bias circuits of RF CMOS cascode power amplifier for linearity enhan- cement", IEEE Trans. Microw. Theory Tech., vol. 60, no. 2, pp. 340-351, Feb. 2012. https://doi.org/10.1109/TMTT.2011.2177857