• 제목/요약/키워드: P. cinnabarinus

Search Result 10, Processing Time 0.022 seconds

Oxidation of Acridine by Laccase of Pycnoporus cinnabarinus SCH-3 (주걱송편버섯(Pycnoporus cinnabarinus SCH-3)의 Laccase에 의한 Acridine 산화)

  • Lee, Hyoun-Su;Han, Man-Deuk;Yoon, Kyung-Ha
    • Korean Journal of Microbiology
    • /
    • v.44 no.2
    • /
    • pp.110-115
    • /
    • 2008
  • Acridine was not a substrate for fungal laccase but it was oxidized to acridone in the culture medium of P. cinnabarinus SCH-3. During the cultivation of P. cinnabarinus SCH-3, Laccase was the predominant extracellular phenoloxidase, and 3-hydroxyanthranilic acid (3-HAA) was produced in the early culture. Cinnabarinic acid (CA) was observed to accumulate in the culture medium. When P. cinnabarinus was grown in the culture medium containing acridine, acridine was oxidized to acridone. But when the laccase purified from the culture medium of P. cinnabarinus directly reacted with acridine in sodium tartrate buffer (pH 3.0), The oxidation of acridine did not happen. In contrast, when 3-HAA was added to the buffer that was mixed with laccase and acridine, the acridine was oxidized to acridone. While in vitro studies, the CA was formed from 3-HAA in the presence of purified laccase. The results suggest that the acridine should be oxidized to the acridone through the mediation of 3-HAA by the laccase in the culture medium of P. cinnabarinus SCH-3.

Mycelial response and ligninolytic enzyme production during interspecific interaction of wood-rotting fungi

  • Lee, Kab-Yeon;Park, Seur-Kee;Park, In-Hyeop;Kim, Joon-Sun;Park, Moon-Su;Jung, Hyun-Chae
    • Journal of Mushroom
    • /
    • v.15 no.4
    • /
    • pp.168-177
    • /
    • 2017
  • To evaluate effects of ligninolytic enzyme type on the mycelial response and ligninolytic enzyme production during interspecific interactions among wood-rotting fungi, 4 fungal strains, Trichophyton rubrum LKY-7, Trichophyton rubrum LSK-27, Pycnoporus cinnabarinus, and Trichoderma viride, were selected. Regarding ligninolytic enzyme production, LKY-7 secreted laccase and manganese peroxidase (MnP), P. cinnabarinus secreted only laccase, and LSK-27 secreted only MnP in glucose-peptone medium, while T. viride did not produce any ligninolytic enzymes. In the co-culture of LKY-7 with P. cinnabarinus, the formation of aerial mycelium was observed and the enhancement of laccase activity owing to interspecific interaction appeared to be very low. In the co-culture of LKY-7 and P. cinnabarinus with LSK-27, a hypha-free clear zone was observed, which resulted in deadlock, and increased laccase or MnP activity was detected at the interaction zone. The interaction responses of LKY-7, P. cinnabarinus, and LSK-27 with T. viride were characterized by the formation of mycelial barrages along the interface. As mycelial barrages were observed at the T. viride territory and no brownish pigment was observed in the mycelial barrages, it is suggested that laccase and MnP are released as part of an offensive response, not as a defensive response. The co-culture of P. cinnabarinus with T. viride lead to the highest enhancement in laccase activity, yielding more than 14-fold increase in laccase activity with respect to the mono-culture of P. cinnabarinus. MnP activities secreted by LKY-7 or LSK-27 was generally low in interspecific interactions.

The Degradation of Wood and Pulp by Wood-degrading Fungi

  • Jung Hyunchae;Geng Xinglian;Li Kai Chang
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.5 s.108
    • /
    • pp.69-77
    • /
    • 2004
  • Degradations of pine, yellow poplar and sweet gum by two fungi, Pycnoporus cinnabarinus and Trichophyton rubrum LSK-27 were investigated. P. cinabarinus degraded pine block samples much faster than T rub rum LSK-27, whereas P. cinnabarinus and T rubrum LSK-27 degraded yellow poplar and sweet gum at almost the same rate. In an effort to get a better understanding of how fungi degrade lignin in wood, contents of various functional groups were analyzed. After three-months of degradation of pine flour by these fungi, the following changes were observed: an increase in condensed phenolic OH group and carboxylic acid group content, a decrease in the guaiacyl phenolic OH content, and little change of aliphatic OH group content. Further studies in the degradation of pine flour by P. cinnabarinus indicated that the increase in condensed phenolic OH group content and the decrease in guaiacyl phenolic OH group content occurred in the first month of the degradation. The changes of functional group contents in the degradation of unbleached softwood kraft pulp by P. cinnabarinus had the same trends as those in the degradation of pine flour. That is, structural alteration of lignin due to the kraft pulping process had little effect on how P. cinnabarinus degraded lignin.

Cultural Characteristics of Pycnoporus coccineus and P. cinnabarinus (간버섯과 주걱간버섯의 배양특성)

  • Ka, Kang-Hyeon;Lee, Jeong-Hee;Hur, Tae-Chul;Yoon, Kab-Hee;Bak, Won-Chull
    • The Korean Journal of Mycology
    • /
    • v.31 no.2
    • /
    • pp.84-88
    • /
    • 2003
  • Basic studies on the cultural characteristics of Pycnoporus coccineus and P. cinnabarinus were performed. They exhibited $30{\sim}40{\circ}C$ optimal temperature ranges and optimal pH ranges of $5{\sim}6$. Among 6 media, they were good at mycelial growths on PDA, LBA and YMA.P. coccineus grew more than P.cinnabarinus on the same medium. Among 10 sawdust media, they were good at mycelial growth on three oak trees and Alnus hirsuta. However, the sawdust of Castanea crenata was bad at mycelial growth. Among 3 coniferous trees, Larix leptolepis showed better growth than the other trees such as Pinus densiflora and P. koraiensis. The fruit body production P. coccineus was about twice better than P. cinnabarinus on Quercus spp. sawdust cultivation.

Degradation of Three Aromatic Dyes by White Rot Fungi and the Production of Ligninolytic Enzymes

  • Jayasinghe, Chandana;Imtiaj, Ahmed;Lee, Geon-Woo;Im, Kyung-Hoan;Hur, Hyun;Lee, Min-Woong;Yang, Hee-Sun;Lee, Tae-Soo
    • Mycobiology
    • /
    • v.36 no.2
    • /
    • pp.114-120
    • /
    • 2008
  • This study was conducted to evaluate the degradation of aromatic dyes and the production of ligninolytic enzymes by 10 white rot fungi. The results of this study revealed that Pycnoporus cinnabarinus, Pleurotus pulmonarius, Ganoderma lucidum, Trametes suaveolens, Stereum ostrea and Fomes fomentarius have the ability to efficiently degrade congo red on solid media. However, malachite green inhibited the mycelial growth of these organisms. Therefore, they did not effectively decolorize malachite green on solid media. However, P. cinnabarinus and P. pulmonarius were able to effectively decolorize malachite green on solid media. T. suaveolens and F. rosea decolorized methylene blue more effectively than any of the other fungi evaluated in this study. In liquid culture, G. lucidum, P. cinnabarinus, Naematoloma fasciculare and Pycnoporus coccineus were found to have a greater ability to decolorize congo red. In addition, P. cinnabarinus, G lucidum and T. suaveolens decolorized methylene blue in liquid media more effectively than any of the other organisms evaluated in this study. Only F. fomentarius was able to decolorize malachite green in liquid media, and its ability to do so was limited. To investigate the production of ligninolytic enzymes in media containing aromatic compounds, fungi were cultured in naphthalene supple mented liquid media. P. coccineus, Coriolus versicolor and P. cinnabarinus were found to produce a large amount of laccase when grown in medium that contained napthalene.

Characterization of Laccase Purified from Korean Pycnoporus cinnabarinus SCH-3 (한국산 주걱송편버섯(Pycnoporus cinnabarinus) SCH-3로부터 정제 된 Laccase의 특성)

  • Park, Eun-Hye;Yoon, Kyung-Ha
    • The Korean Journal of Mycology
    • /
    • v.31 no.2
    • /
    • pp.59-66
    • /
    • 2003
  • Laccase produced by Pycnoporus cinnabarinus SCH-3 isolated from Korea was partially purified using ultrafiltration, anion exchange chromatography and affinity chromatography, The laccase was produced as the predominant extracellular phenoloxidase during primary metabolism. Neither lignin peroxidase nor manganese-dependent peroxidase were detected in the culture fluid. In order to examine the effect of inducers in laccase production, 2,5-xylidine was added in the culture of Pycnoporus cinnabarinus SCH-3. Addition of 2,5-xylidine enhanced 25-fold laccase production. Purified laccase was a single polypeptide having a molecular mass of approximately 66 kDa, as determined by SDS-polyacrylamide gel electrophoresis, and carbohydrate content of 9%. $K_{m}\;and\;V_{max}$ values for laccase with ABTS [2,2-azinobis (3-ethylbenzthiazoline 6-sulfonic acid)] as a substrate (Lineweaver-Burk plot) was determined to be $44.4{\mu}M\;and\;56.0{\mu}mole$, respectively. The optimal pH for laccase activity was found to be 3.0. The enzyme was very stable for 1 hour at $60{\circ}C$. Half-life ($t_{1/2}$) of the enzyme was about 10 min at $80{\circ}C$. Spectroscopic analysis of purified enzyme indicated that the enzyme was typical of copper-containing protein. Substrate specificity and inhibitor studies for laccase also indicated to be a typical fungal laccase. The N-terminal amino acid sequence of the P. cinnabarinus SCH-3 laccase showed 94% of homology to the N-terminal sequences of laccases from P. cinnabarinus PB and P. coccineus.

Studies on the Screening and Development of Antibiotics in the Mushroom -The Screening of Antifungal Components in Basidiomycetes (I)- (버섯중 항균물질의 검색 및 개발에 관한 연구 -버섯중 항진균활성 물질의 검색 (I)-)

  • Min, Tae-Jin;Kim, Eun-Mi;Lee, Sun-Jung;Bae, Kang-Gyu
    • The Korean Journal of Mycology
    • /
    • v.23 no.1 s.72
    • /
    • pp.14-27
    • /
    • 1995
  • For the searching of antibiotics in the mushroom, we studied on the screening of antiyeast and antifungal components. The powder of fruiting body of each mushroom was extracted with petroleum ether, 80% ethanol, and distilled water in that order, respectively. The antifungal activity of each extract from 32 different mushrooms were tested. The petroleum ether or ethanol extracts from fruiting bodies of Boletus auripes, Leccinum extremiorientale, Gomphus floccosus, Phaeolus schweinitzii, Pycnoporus cinnabarinus and Marasmius maximus showed antiyeast activities. The ethanol extract of Gyrophora esculenta showed an antiyeast activity against Cryptococcus neoformans, and its minimal inhibitory concentration (MIC) was $600\;{\mu}g/ml$. The petroleum ether or ethanol extracts from fruiting bodies of Amanita citrina, Leccinum extremiorientale, Gomphus floccosus, Phaeolus schweinitzii, Pycnoporus cinnabarinus, Marasmius maximus and Gyrophora esculenta showed antifungal activities. The ethanol extract of Gomphus floccoscus showed an antifungal activity against Microsporum gypseum, and its MIC was $1,000\;{\mu}g/ml$. The ethanol extract of Gyrophora esculenta showed antifungal activities against Trichophyton mentagrophytes, Microsporum gypseum and Pyricularia oryzae, and theirs MIC were $300\;{\mu}g/ml,\;600\;{\mu}g/ml\;and\;600\;{\mu}g/ml$, respectively. The petroleum ether extract of Gyrophrora esculenta also showed an antifungal activity against Microsporum gypseum, and its MIC was $300\;{\mu}g/ml$.

  • PDF

Fungal laccases from basidiomycetes and their inducibility (담자균으로부터 생산되는 균체 Laccases 및 이 효소의 유도특성)

  • Leonowicz, Andrzej;Wilkolazka, A.;Rogalski, J.;Kim, Dong-Hoon;Cho, Nam-Seok
    • Journal of Mushroom
    • /
    • v.2 no.3
    • /
    • pp.127-139
    • /
    • 2004
  • Laccases are multicopper-containing enzymes which catalyze the oxidation of phenolic and nonphenolic compounds with the concomitant reduction of molecular oxygen. They often occur as isoenzymes, either constitutive or inducible, that oligomerize to multilateral complexes, what allow for penetration to the woody cell wall structure. White rot basidiomycete fungi may produce a number of laccase isoenzymes, some constitutively and others after induction. Fungal laccase is commonly induced by many ions, such as $Cu^{2+}$, $Cd^{2+}$ $Ca^{2+}$, $Li^+$, $Mn^{2+}$, $Ag^+$, $Hg^{2+}$, Mn and $Fe^{3+}$, phenolic compounds, some organic compounds, such as ethanol, isopropanol, cAMP, caffeine, p-anisidine, viscosinamide and paraquat, and nitrogens and even heat shock. A combination of Cu and pHB (p-hydroxybenzoic acid) made it possible to extend the inducible laccase activities over 30-fold. But the most effective inducer of laccase in the basidiomycete and other higher fungi is 2,5-xylidine, over 160-fold stimulation of laccase activity. The laccases are frequently encoded by gene families, as e.g. in Pycnoporus cinnabarinus, from which the lcc3-1 or the allelic form lac1 and lac3-2 have been cloned and sequenced. In the case of inducible forms the post-inductional laccase formation depends upon the synthesis of mRNA and the induction is due to the synthesis of a new protein.

  • PDF

Examination of the biological activities of wild mushrooms extracts in Korea (국내 자생 야생버섯류 추출물의 생리활성 연구)

  • An, Gi-Hong;Cho, Jae-Han;Han, Jae-Gu
    • Journal of Mushroom
    • /
    • v.18 no.2
    • /
    • pp.151-163
    • /
    • 2020
  • Antioxidant activities and contents of β-glucan and amino acids of wild mushrooms collected from Geosan, Boeun, Eumseong, and Bonghwa in Korea were investigated. Phaeolus schweinitzii (OK1165) displayed the highest 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity (60.3%), ferric reducing antioxidant power (3.84), reducing power (1.05), nitrite scavenging activity (96.4%), total polyphenol content (54.7 mg gallic acid equivalent/g), and flavonoid content (19.98 mg quercetin equivalent/g). The β-glucan content of Pycnoporus cinnabarinus (OK1172) of 51.9% was higher than the contents of the other mushrooms. P. schweinitzii (OK1165) displayed the highest total amino acid (1,373.9 mg/kg) and essential amino acid (515.0 mg/kg) contents among the wild mushrooms. The findings confirmed that wild mushrooms could be a high-value resource for functional foods with pronounced antioxidant activity. The results also provide fundamental data for extracting useful compounds from wild mushrooms.

Effects of Additives on the Improvement of Frozen Dough Quality (첨가물이 냉동반죽의 품질향상에 미치는 영향)

  • Lee, Young-Chun;Jeong, Hyung-Won;Yoon, Suk-Kwon
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.217-225
    • /
    • 2004
  • This study was carried out to reduce the loss of frozen dough quality during frozen storage. Using response surface method, ascorbic acid 160.4 ppm, L-cysteine 63.1 ppm, and SSL 0.6% were found to be optimum, with xanthan gum 0.3% (formula A) and Ultra tex-3 5% (formula B) added as cryoprotectants. During frozen storage at $-20^{\circ}C$, control rapidly deteriorated after 4 weeks, while formulas A and B showed slight deterioration with immutable quality after 10 weeks.