Browse > Article

Oxidation of Acridine by Laccase of Pycnoporus cinnabarinus SCH-3  

Lee, Hyoun-Su (Department of Life Science, Soonchunhyang University)
Han, Man-Deuk (Department of Life Science, Soonchunhyang University)
Yoon, Kyung-Ha (Department of Life Science, Soonchunhyang University)
Publication Information
Korean Journal of Microbiology / v.44, no.2, 2008 , pp. 110-115 More about this Journal
Abstract
Acridine was not a substrate for fungal laccase but it was oxidized to acridone in the culture medium of P. cinnabarinus SCH-3. During the cultivation of P. cinnabarinus SCH-3, Laccase was the predominant extracellular phenoloxidase, and 3-hydroxyanthranilic acid (3-HAA) was produced in the early culture. Cinnabarinic acid (CA) was observed to accumulate in the culture medium. When P. cinnabarinus was grown in the culture medium containing acridine, acridine was oxidized to acridone. But when the laccase purified from the culture medium of P. cinnabarinus directly reacted with acridine in sodium tartrate buffer (pH 3.0), The oxidation of acridine did not happen. In contrast, when 3-HAA was added to the buffer that was mixed with laccase and acridine, the acridine was oxidized to acridone. While in vitro studies, the CA was formed from 3-HAA in the presence of purified laccase. The results suggest that the acridine should be oxidized to the acridone through the mediation of 3-HAA by the laccase in the culture medium of P. cinnabarinus SCH-3.
Keywords
3-hydroxyanthranilic acid; acridine; acridone; cinnabarinic acid; laccase; Pycnoporus cinnabarinus;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Bleeker, E.A.J., H.G. Van Der Geest, M.H.S. Kraak, P. De Voogt, and W. Admiraal. 1998. Comparative ecotoxicity of NPAHs to larvae of the midge Chironomus riparius. Aquat. Toxicol. 41, 51-62   DOI   ScienceOn
2 Dean, J.F.D. and K.E.L. Eriksson. 1994. Laccase and the deposition of lignin in vascular plants. Holzforschung 48, 21-33   DOI   ScienceOn
3 Eggert, C., U. Temp, and K.E.L. Eriksson. 1996a. A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase. FEBS Lett. 391, 144-148   DOI   ScienceOn
4 Johannes, C. and A. Majcherczyk. 2000. Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems. Appl. Environ. Microbiol. 66, 524-528   DOI
5 Kraak, M.H.S., C. Ainscough, A. Fernandez, P.L.A. Van Vlaardingen, P. De Voogt, and W.A. Admiraal. 1997. Short-term and chronic exposure of zebra mussel (Dreissena polymorpha) to acridine: effects and metabolism. Aquat. Toxicol. 37, 9-20   DOI   ScienceOn
6 Merkle, R.K. and I. Poppe. 1994. Carbohydrate composition analysis of glycoconjugates by gas-liquid chromatography/ mass spectrometry. Methods Enzymol. 230, 1-15   DOI
7 Park, E.H. and K.H. Yoon. 2003. Characterization of laccase purified from Korean Pycnoporus cinnabarinus SCH-3. Korean J. Mycology 31, 59-66   과학기술학회마을   DOI
8 Pereira, W.E., C.E. Rostad, J.R. Garbarino, and M.F. Hult. 1983. Groundwater contamination by organic bases derived from coal tar wastes. Environ. Toxicol. Chem. 2, 283-294   DOI
9 Seixas, G.M., N.M. Andon, P.G. Hollingshead, and W.G. Thilly. 1982. The aza-arenes as mutagens for Salmonella typhimurium. Mutation Res. 102, 201-212   DOI   ScienceOn
10 Wakeham, S.G. 1979. Azaarenes in recent marine lake sediments. Environ. Sci. Technol. 13, 1118-1123   DOI
11 Bourbonnais, R. and M.G. Paice. 1990. Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett. 267, 99-102   DOI   ScienceOn
12 Mayer, A.M. 1987. Polyphenol oxidases in plant-recent progress. Phytochemistry 26, 11-20   DOI   ScienceOn
13 Malley, D.M., R. Whetten, W. Bao, C.L. Chen, and R. Sedoemaker. 1993. The role of laccase in lignification. Plant J. 4, 751-757   DOI   ScienceOn
14 Christen, S., P. Southwell-Keely, and R. Stocker. 1992. Oxidation of 3-hydroxyanthranilic acid to the phenoxazinone cinnabarinic acid by peroxyl radicals and by compound of peroxidases or catalase. Biochemistry 31, 8090-8097   DOI   ScienceOn
15 McMurtrey, K.O. and T.J. Knight. 1984. Metabolism of acridine by rat-liver enzmes. Mutat. Res. 140, 7-11   DOI   ScienceOn
16 Eggert, C., U. Temp, and K.E.L. Eriksson. 1996b. The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Appl. Environ. Microbiol. 62, 1151-1158   PUBMED
17 Matsuoka, A., K. Shudo, Y. Saito, T. Sofuni, and M. Ishidate. 1982. Clastogenic potential of heavy oil extracts and some aza-arenes in Chinese hamster cells in culture. Mutation Res. 102, 275-293   DOI   ScienceOn
18 Niku-Paavola, M.L., L. Raaska, and M. Itavaara. 1990. Detection of white-rot fungi by non-toxic stain. Mycol. Res. 94, 27-30   DOI
19 Eggert, C., U. Temp, J.F.D. Dean, and K.E.L. Eriksson. 1995. Laccase-mediated formation of the phenoxazinone derivative, cinnabarinic acid. FEBS Lett. 376, 202-206   DOI   ScienceOn
20 Sutherland, J.B., F.E. Evans, J.P. Freeman, A.J. Williams, J. Deck, and C.E. Cerniglia. 1994. Identification of metabolites produced from acridine by Cunninghamella elegans. Mycologia 86, 117-120   DOI
21 Gerard, P.M., P.K. David, and P. Mack. 2001. Synthesis of acridine-based DNA bis-intercalating agents. Molecules 6, 230-243   DOI
22 Toussaint, O. and K. Lerch. 1987. Catalytic oxidation of 2-aminophenols and orth hydroxylation of aromatic amines by tyrosinase. Biochemistry 26, 8568-8571
23 Santodonato, J. and P.H. Howard. 1981. Azaarenes: sources, distribution, environmental impact and health effects, p. 421-438. In J. Saxana and F. Fisher (ed.), Hazard Assessment of Chemicals, vol. 1. Academic Press, NY, USA
24 Bleeker, E.A.J., H.G. Van Der Geest, H.J.C. Klamer, P. De Voogt, E. Wind, and M.H.S. Kraak. 1999. Toxic and genotoxic effects of azaarenes: Isomers and metabolites. Polycycl. Arom. Comp. 13, 191-203   DOI   ScienceOn
25 Camarero, S., D. Ibarra, M.J. Martinez, and A.T. Martinez. 2005. Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl. Environ. Microbiol. 71, 1775-1784   DOI   ScienceOn
26 Shaghi, M., P. Jeandet, R. Bessis, and P. Leroux. 1996. Degradation of stilbene-type phytoalexins in relation to the pathogenicity of Botrytis cinerea to grapevines. Plant Pathol. 45, 139-144   DOI
27 Andersen, S.O. 1985, Sclerotization and tanning in cuticle, p.59-64. In G.A. Kerkut and L.I. Gillert (ed.), Comparative insect physiology, biochemistry and pharmacology, vol. 3. Pergamon Press, Oxford, England