Oxidation of Acridine by Laccase of Pycnoporus cinnabarinus SCH-3

주걱송편버섯(Pycnoporus cinnabarinus SCH-3)의 Laccase에 의한 Acridine 산화

  • 이현수 (순천향대학교 자연과학대학 생명과학과) ;
  • 한만덕 (순천향대학교 자연과학대학 생명과학과) ;
  • 윤경하 (순천향대학교 자연과학대학 생명과학과)
  • Published : 2008.06.30

Abstract

Acridine was not a substrate for fungal laccase but it was oxidized to acridone in the culture medium of P. cinnabarinus SCH-3. During the cultivation of P. cinnabarinus SCH-3, Laccase was the predominant extracellular phenoloxidase, and 3-hydroxyanthranilic acid (3-HAA) was produced in the early culture. Cinnabarinic acid (CA) was observed to accumulate in the culture medium. When P. cinnabarinus was grown in the culture medium containing acridine, acridine was oxidized to acridone. But when the laccase purified from the culture medium of P. cinnabarinus directly reacted with acridine in sodium tartrate buffer (pH 3.0), The oxidation of acridine did not happen. In contrast, when 3-HAA was added to the buffer that was mixed with laccase and acridine, the acridine was oxidized to acridone. While in vitro studies, the CA was formed from 3-HAA in the presence of purified laccase. The results suggest that the acridine should be oxidized to the acridone through the mediation of 3-HAA by the laccase in the culture medium of P. cinnabarinus SCH-3.

Acridine은 fungal laccase의 기질이 아님에도 불구하고 acridine을 Pycnoporus cinnabarinus SCH-3 배양액에 첨가했을 때 acridone으로 산화되었다. P. cinnabarinus SCH-3균주는 배양 중에 다량의 laccase와 3-hydroxyanthranilic acid (3-HAA)와 cinnabarinic acid (CA)를 생성했다. 정제된 laccase와 acridine을 완충용액에서 직접 반응시켰을 때 acridine은 변화되지 않았다. 그러나 laccase의 기질인 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS)나 3-HAA를 laccase와 acridine 혼합액에 첨가했을 경우에는 acridine이 acridone으로 산화되었다. 특히 ABTS 첨가구는 3-HAA 첨가구보다 acridine 산화율이 2배 이상 높았다. 한편 정제된 laccase와 3-HAA를 완충액에서 반응시켰을 때 3-HAA는 CA로 전환되었다. 이와 같은 실험결과들은 P. cinnabarinus SCH-3의 laccase가 배양중에 생산된 3-HAA를 매개체로 사용하여 acridine을 acridone으로 산화하고 CA는 laccase에 의하여 3-HAA로부터 합성됨을 나타낸다.

Keywords

References

  1. Andersen, S.O. 1985, Sclerotization and tanning in cuticle, p.59-64. In G.A. Kerkut and L.I. Gillert (ed.), Comparative insect physiology, biochemistry and pharmacology, vol. 3. Pergamon Press, Oxford, England
  2. Bleeker, E.A.J., H.G. Van Der Geest, M.H.S. Kraak, P. De Voogt, and W. Admiraal. 1998. Comparative ecotoxicity of NPAHs to larvae of the midge Chironomus riparius. Aquat. Toxicol. 41, 51-62 https://doi.org/10.1016/S0166-445X(97)00070-2
  3. Bleeker, E.A.J., H.G. Van Der Geest, H.J.C. Klamer, P. De Voogt, E. Wind, and M.H.S. Kraak. 1999. Toxic and genotoxic effects of azaarenes: Isomers and metabolites. Polycycl. Arom. Comp. 13, 191-203 https://doi.org/10.1080/10406639908020563
  4. Bourbonnais, R. and M.G. Paice. 1990. Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett. 267, 99-102 https://doi.org/10.1016/0014-5793(90)80298-W
  5. Camarero, S., D. Ibarra, M.J. Martinez, and A.T. Martinez. 2005. Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl. Environ. Microbiol. 71, 1775-1784 https://doi.org/10.1128/AEM.71.4.1775-1784.2005
  6. Christen, S., P. Southwell-Keely, and R. Stocker. 1992. Oxidation of 3-hydroxyanthranilic acid to the phenoxazinone cinnabarinic acid by peroxyl radicals and by compound of peroxidases or catalase. Biochemistry 31, 8090-8097 https://doi.org/10.1021/bi00149a045
  7. Dean, J.F.D. and K.E.L. Eriksson. 1994. Laccase and the deposition of lignin in vascular plants. Holzforschung 48, 21-33 https://doi.org/10.1515/hfsg.1994.48.s1.21
  8. Eggert, C., U. Temp, J.F.D. Dean, and K.E.L. Eriksson. 1995. Laccase-mediated formation of the phenoxazinone derivative, cinnabarinic acid. FEBS Lett. 376, 202-206 https://doi.org/10.1016/0014-5793(95)01274-9
  9. Eggert, C., U. Temp, and K.E.L. Eriksson. 1996a. A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase. FEBS Lett. 391, 144-148 https://doi.org/10.1016/0014-5793(96)00719-3
  10. Eggert, C., U. Temp, and K.E.L. Eriksson. 1996b. The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Appl. Environ. Microbiol. 62, 1151-1158
  11. Gerard, P.M., P.K. David, and P. Mack. 2001. Synthesis of acridine-based DNA bis-intercalating agents. Molecules 6, 230-243 https://doi.org/10.3390/60300230
  12. Johannes, C. and A. Majcherczyk. 2000. Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems. Appl. Environ. Microbiol. 66, 524-528 https://doi.org/10.1128/AEM.66.2.524-528.2000
  13. Kraak, M.H.S., C. Ainscough, A. Fernandez, P.L.A. Van Vlaardingen, P. De Voogt, and W.A. Admiraal. 1997. Short-term and chronic exposure of zebra mussel (Dreissena polymorpha) to acridine: effects and metabolism. Aquat. Toxicol. 37, 9-20 https://doi.org/10.1016/S0166-445X(96)00809-0
  14. Malley, D.M., R. Whetten, W. Bao, C.L. Chen, and R. Sedoemaker. 1993. The role of laccase in lignification. Plant J. 4, 751-757 https://doi.org/10.1046/j.1365-313X.1993.04050751.x
  15. Matsuoka, A., K. Shudo, Y. Saito, T. Sofuni, and M. Ishidate. 1982. Clastogenic potential of heavy oil extracts and some aza-arenes in Chinese hamster cells in culture. Mutation Res. 102, 275-293 https://doi.org/10.1016/0165-1218(82)90137-9
  16. Mayer, A.M. 1987. Polyphenol oxidases in plant-recent progress. Phytochemistry 26, 11-20 https://doi.org/10.1016/S0031-9422(00)81472-7
  17. McMurtrey, K.O. and T.J. Knight. 1984. Metabolism of acridine by rat-liver enzmes. Mutat. Res. 140, 7-11 https://doi.org/10.1016/0165-7992(84)90064-2
  18. Merkle, R.K. and I. Poppe. 1994. Carbohydrate composition analysis of glycoconjugates by gas-liquid chromatography/ mass spectrometry. Methods Enzymol. 230, 1-15 https://doi.org/10.1016/0076-6879(94)30003-8
  19. Niku-Paavola, M.L., L. Raaska, and M. Itavaara. 1990. Detection of white-rot fungi by non-toxic stain. Mycol. Res. 94, 27-30 https://doi.org/10.1016/S0953-7562(09)81260-4
  20. Park, E.H. and K.H. Yoon. 2003. Characterization of laccase purified from Korean Pycnoporus cinnabarinus SCH-3. Korean J. Mycology 31, 59-66 https://doi.org/10.4489/KJM.2003.31.2.059
  21. Pereira, W.E., C.E. Rostad, J.R. Garbarino, and M.F. Hult. 1983. Groundwater contamination by organic bases derived from coal tar wastes. Environ. Toxicol. Chem. 2, 283-294 https://doi.org/10.1897/1552-8618(1983)2[283:GCBOBD]2.0.CO;2
  22. Santodonato, J. and P.H. Howard. 1981. Azaarenes: sources, distribution, environmental impact and health effects, p. 421-438. In J. Saxana and F. Fisher (ed.), Hazard Assessment of Chemicals, vol. 1. Academic Press, NY, USA
  23. Seixas, G.M., N.M. Andon, P.G. Hollingshead, and W.G. Thilly. 1982. The aza-arenes as mutagens for Salmonella typhimurium. Mutation Res. 102, 201-212 https://doi.org/10.1016/0165-1218(82)90130-6
  24. Shaghi, M., P. Jeandet, R. Bessis, and P. Leroux. 1996. Degradation of stilbene-type phytoalexins in relation to the pathogenicity of Botrytis cinerea to grapevines. Plant Pathol. 45, 139-144 https://doi.org/10.1046/j.1365-3059.1996.d01-101.x
  25. Sutherland, J.B., F.E. Evans, J.P. Freeman, A.J. Williams, J. Deck, and C.E. Cerniglia. 1994. Identification of metabolites produced from acridine by Cunninghamella elegans. Mycologia 86, 117-120 https://doi.org/10.2307/3760726
  26. Toussaint, O. and K. Lerch. 1987. Catalytic oxidation of 2-aminophenols and orth hydroxylation of aromatic amines by tyrosinase. Biochemistry 26, 8568-8571
  27. Wakeham, S.G. 1979. Azaarenes in recent marine lake sediments. Environ. Sci. Technol. 13, 1118-1123 https://doi.org/10.1021/es60157a012