• Title/Summary/Keyword: P-type Si

Search Result 952, Processing Time 0.028 seconds

Electrochemical Etch-Stop Suitable for MEMS Applications

  • Chung, Gwiy-Sang;Kim, Sun-Chunl;Kim, Tae-Song
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.2
    • /
    • pp.26-31
    • /
    • 2001
  • This paper presents the electrochemical etch-stop characteristics of single-crystal Si(001) wafers in tetramethyl ammonium hydroxide(TMAH):isopropyl alcohol(IPA):pyrazine solutions. The addition of pyrazine to TMAH:IPA solutions increased the etch rate of (100) Si, thus the etching time required by the etch-stop process shortened. The current-voltage(I-V) characteristics of n- and p-type Si in TMAH:IPA:pyrazine solutions were obtained, respectively. Open circuit potential(OCP) and passivation potential(PP) of n- and p-type Si, respectively, were obtained and applied potential was selected between n- and p-type Si PPs. The electrochemical etch-stop method was used to fabricate 801 microdiaphragms of 20 ${\mu}{\textrm}{m}$ thickness on a 5-inch Si wafer. The average thickness of fabricated 801 microdiaphragms on one Si wafer was 20.03 ${\mu}{\textrm}{m}$ and the standard deviation was $\pm$0.26 ${\mu}{\textrm}{m}$. The Si surface of the etch-stopped microdiaphragm was extremely flat with no noticeable taper or nonuniformity.

  • PDF

Comparison Study on Electrical Properties of SiGe JFET and Si JFET (SiGe JFET과 Si JFET의 전기적 특성 비교)

  • Park, B.G.;Yang, H.D.;Choi, C.J.;Shim, K.H.
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.11
    • /
    • pp.910-917
    • /
    • 2009
  • We have designed a new structures of Junction Field Effect Transistor(JFET) using SILVACO simulation to improve electrical properties and process reliability. The device structure and process conditions of Si control JFET(Si JFET) were determined to set cut off voltage and drain current(at Vg=0 V) to -0.46 V and $300\;{\mu}A$, respectively. Among many design parameters influencing the performance of the device, the drive-in time of p-type gate is presented most predominant effects. Therefore we newly designed SiGe JFET, in which SiGe layers were placed above and underneath of Si-channel. The presence of SiGe layer could lessen Boron into the n-type Si channel, so that it would be able to enhance the structural consistency of p-n-p junction. The influence of SiGe layer could be explained in conjunction with boron diffusion and corresponding I-V characteristics in comparison with Si-control JFET.

A simulation of high efficiently thin film solar cell with buffer layer (버퍼층 삽입을 통한 박막 태양전지의 고효율화 시뮬레이션)

  • Kim, Heejung;Jang, Juyeon;Baek, Seungsin;Yi, Junsin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.64.2-64.2
    • /
    • 2011
  • a-Si 박막 태양전지는 a-Si:H을 유리 기판 사이에 주입해 만드는 태양전지로, 뛰어난 적용성과 경제성을 지녔으나 c-Si 태양전지에 비해 낮은 변환 효율을 보이는 단점이 있다. 변환 효율을 높이기 위한 연구 방법으로는 a-Si 박막 태양전지 단일cell 제작 시 high Bandgap을 가지는 p-layer를 사용함으로 높은 Voc와 Jsc의 향상에 기여할 수 있는데, 이 때 p-layer의 defect 증가와 activation energy 증가도 동시에 일어나 변환 효율의 증가폭을 감소시킨다. 이를 보완하기 위해 본 실험에서는 p-layer에 기존의 p-a-Si:H를 사용함과 동시에 high Bandgap의 buffer layer를 p-layer와 i-layer 사이에 삽입함으로써 그 장점을 유지하고 높은 defect과 낮은 activation energy의 영향을 최소화하였다. ASA 시뮬레이션을 통해 a-Si:H보다 high Bandgap을 가지는 a-SiOx 박막을 사용하여 p-type buffer layer의 두께를 2nm, Bandgap 2.0eV, activation energy를 0.55eV로 설정하고, i-type buffer layer의 두께를 2nm, Bandgap 1.8eV로 설정하여 삽입하였을 때 박막 태양전지의 변환 효율 10.74%를 달성할 수 있었다. (Voc=904mV, Jsc=$17.48mA/cm^2$, FF=67.97).

  • PDF

Highly Stabilized Protocrystalline Silicon Multilayer Solar Cells (고 안정화 프로터결정 실리콘 다층막 태양전지)

  • Lim Koeng Su;Kwak Joong Hwan;Kwon Seong Won;Myong Seung Yeop
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.102-108
    • /
    • 2005
  • We have developed highly stabilized (p-i-n)-type protocrystalline silicon (pc-Si:H) multilayer solar cells. To achieve a high conversion efficiency, we applied a double-layer p-type amorphous silicon-carbon alloy $(p-a-Si_{1-x}C_x:H)$ structure to the pc-Si:H multilayer solar cells. The less pronounced initial short wavelength quantum efficiency variation as a function of bias voltage proves that the double $(p-a-Si_{1-x}C_x:H)$ layer structure successfully reduces recombination at the p/i interface. It was found that a natural hydrogen treatment involving an etch of the defective undiluted p-a-SiC:H window layer before the hydrogen-diluted p-a-SiC:H buffer layer deposition and an improvement of the order in the window layer. Thus, we achieved a highly stabilized efficiency of $9.0\%$ without any back reflector.

  • PDF

Electrical Characteristics of Ni/Ti/Al Ohmic Contacts to Al-implanted p-type 4H-SiC (Al 이온 주입된 p-type 4H-SiC에 형성된 Ni/Ti/Al Ohmic Contact의 전기적 특성)

  • Joo, Sung-Jae;Song, Jae-Yeol;Kang, In-Ho;Bahng, Wook;Kim, Sang-Cheol;Kim, Nam-Kyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.11
    • /
    • pp.968-972
    • /
    • 2008
  • Ni/Ti/Al multilayer system ('/'denotes the deposition sequence) was tested for low-resistance ohmic contact formation to Al-implanted p-type 4H-SiC. Ni 30 nm / Ti 50 nm / Al 300 nm layers were sequentially deposited by e-beam evaporation on the 4H-SiC samples which were implanted with Al (norminal doping concentration = $4\times10^{19}cm^{-3}$) and then annealed at $1700^{\circ}C$ for dopant activation. Rapid thermal anneal (RTA) temperature for ohmic contact formation was varied in the range of $840\sim930^{\circ}C$. Specific contact resistances were extracted from the measured current vs. voltage (I-V) data of linear- and circular transfer length method (TLM) patterns. In constrast to Ni contact, Ni/Ti/Al contact shows perfectly linear I-V characteristics, and possesses much lower contact resistance of about $2\sim3\times10^{-4}\Omega{\cdot}cm^2$ even after low-temperature RTA at $840^{\circ}C$, which is about 2 orders of magnitude smaller than that of Ni contact. Therefore, it was shown that RTA temperature for ohmic contact formation can be lowered to at least $840^{\circ}C$ without significant compromise of contact resistance. X-ray diffraction (XRD) analysis indicated the existence of intermetallic compounds of Ni and Al as well as $NiSi_{1-x}$, but characteristic peaks of $Ti_{3}SiC_2$, a probable narrow-gap interfacial alloy responsible for low-resistance Ti/Al ohmic contact formation, were not detected. Therefore, Al in-diffusion into SiC surface region is considered to be the dominant mechanism of improvement in conduction behavior of Ni/Ti/Al contact.

MoO3/p-Si Heterojunction for Infrared Photodetector (MoO3 기반 실리콘 이종접합 IR 영역 광검출기 개발)

  • Park, Wang-Hee;Kim, Joondong;Choi, In-Hyuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.8
    • /
    • pp.525-529
    • /
    • 2017
  • Molybdenum oxide ($MoO_3$) offers pivotal advantages for high optical transparency and low light reflection. Considering device fabrication, n-type $MoO_3$ semiconductor can spontaneously establish a junction with p-type Si. Since the energy bandgap of Si is 1.12 eV, a maximum photon wavelength of around 1,100 nm is required to initiate effective photoelectric reaction. However, the utilization of infrared photons is very limited for Si photonics. Hence, to enhance the Si photoelectric devices, we applied the wide energy bandgap $MoO_3$ (3.7 eV) top-layer onto Si. Using a large-scale production method, a wafer-scale $MoO_3$ device was fabricated with a highly crystalline structure. The $MoO_3/p-Si$ heterojunction device provides distinct photoresponses for long wavelength photons at 900 nm and 1,100 nm with extremely fast response times: rise time of 65.69 ms and fall time of 71.82 ms. We demonstrate the high-performing $MoO_3/p-Si$ infrared photodetector and provide a design scheme for the extension of Si for the utilization of long-wavelength light.

Applications of XPS and SIMS for the development of Si quantum dot solar cell

  • Kim, Gyeong-Jung;Hong, Seung-Hwi;Kim, Yong-Seong;Lee, U;Kim, Yeong-Heon;Seo, Se-Yeong;Jang, Jong-Sik;Sin, Dong-Hui;Choe, Seok-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.297-297
    • /
    • 2010
  • Precise control of the position and density of doping elements at the nanoscale is becoming a central issue for realizing state-of-the-art silicon-based optoelectronic devices. As dimensions are scaled down to take benefits from the quantum confinement effect, however, the presence of interfaces and the nature of materials adjacent to silicon turn out to be important and govern the physical properties. Utilization of visible light is a promising method to overcome the efficiency limit of the crystalline Si solar cells. Si quantum dots (QDs) have been proposed as an emission source of visible light, which is based on the quantum confinement effect. Light emission in the visible wavelength has been reported by controlling the size and density of Si QDs embedded within various types of insulating matrix. For the realization of all-Si QD solar cells with homojunctions, it is prerequisite not only to optimize the impurity doping for both p- and n-type Si QDs, but also to construct p-n homojunctions between them. In this study, XPS and SIMS were used for the development of p-type and n-type Si quantum dot solar cells. The stoichiometry of SiOx layers were controlled by in-situ XPS analysis and the concentration of B and P by SIMS for the activated doping in Si nano structures. Especially, it has been experimentally evidenced that boron atoms in silicon nanostructures confined in SiO2 matrix can segregate into the Si/$SiO_2$ interfaces and the Si bulk forming a distinct bimodal spatial distribution. By performing quantitative analysis and theoretical modelling, it has been found that boron incorporated into the four-fold Si crystal lattice can have electrical activity. Based on these findings, p-type Si quantum dot solar cell with the energy-conversion efficiency of 10.2% was realized from a [B-doped $SiO_{1.2}$(2 nm)/$SiO_2(2\;nm)]^{25}$ superlattice film with a B doping level of $4.0{\times}10^{20}\;atoms/cm^2$.

  • PDF

Wide Bandgap 박막 태양전지 제작을 위한 P-type a-$SiO_x$:H layer 최적화에 관한 연구

  • Yun, Gi-Chan;Kim, Yeong-Guk;Park, Seung-Man;Park, Jin-Ju;Lee, Seon-Hwa;An, Si-Hyeon;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.153-153
    • /
    • 2010
  • p-i-n 형 비정질 실리콘 박막 태양전지에서 p층은 창물질(window material)로서 전기 전도도가 크고, 빛 흡수가 적어야한다. p층의 두께가 얇으면 p층 전체가 depletion layer가 되고 충분한 diffusion potential을 얻을 수 없어 open-circuit voltage ($V_{oc}$)가 작아진다. 반대로 p층 두께가 두꺼워지면 빛 흡수가 증가하고, 표면 재결합이 문제가 되어 변환효율이 감소한다. 밴드갭이 큰 물질로 창층을 제작하게 되면 보다 짧은 파장의 입사광이 직접 i층을 비추므로 Short-circuit current ($I_{sc}$) 와 fill factor를 증가시킬 수 있다. 하여 본 연구에서는 기존의 창층으로 사용되는 Boron을 doping한 p-type a-Si:H 대신에 $N_2O$를 첨가한 p-type a-$SiO_x$:H의 $N_2O$ flow rate에 따른 밴드갭의 변화에 관한 연구를 수행하였다. p-type a-$SiO_x$:H Layer는 $SiH_4$, $H_2$, $N_2O$, $B_2H_6$ 가스를 혼합하여 증착하게 되는데 $SiH_4$, 가스와 $H_2$ 가스의 혼합비는 1:20, $B_2H_6$ 농도는 0.5%로 고정 하였으며 $N_2O$의 flow rate을 가변하며 증착하였다. $N_2O$의 가변조건은 5에서 50sccm으로 가변하여 증착하며 일반적으로 사용되는 RF-PECVD (13.56MHz)를 이용하였고 증착 온도는 175도, 전극간의 거리는 40mm, 파워와 압력은 30W, 700mTorr로 고정하여 진행하였다. 전기적 특성을 알아보기 위해 eagle 2000 Glass를 사용하였고 구조적 특성은 p-type wafer를 사용하여 각각 대략 200nm의 두께로 증착하였다. 증착 두께는 Ellipsometry를 이용하였으며 전기 전도도는 Agilent사의 4156c를 구조적특성은 FT-IR을 사용하여 측정하였다. Conductivity(${\sigma}_d$)는 $N_2O$가 증가함에 따라 $8.73\;{\times}\;10^{-6}$에서 $5.06\;{\times}\;10^{-7}$으로 감소하였고 optical bandgap ($E_{opt}$)은 1.71eV에서 2.0eV로 증가함을 알 수 있었다. 또한 reflective index(n)의 경우는 4.32에서 3.52로 감소함을 나타내었다. 기존의 p-type a-Si:H에 비해 상당한 $E_{opt}$을 가지므로 빛 흡수에 의한 손실을 줄임으로서 $V_oc$를 향상 시킬 수 있으며 동시에 짧은 파장에서의 입사광이 직접 i층을 비추므로 $I_{sc}$와 FF를 향상 시킬 수 있으리라 예상된다. 다소 낮은 전도도만 개선한다면 고효율의 박막 태양전지를 제작 할 수 있을 것으로 기대된다.

  • PDF

An Analysis of Light Induced Degradation with Optical Source Properties in Boron-Doped P-Type Cz-Si Solar Cells (광원의 특성에 따른 Boron-doped p-type Cz-Si 태양전지의 광열화 현상 분석)

  • Kim, Soo Min;Bae, Soohyun;Kim, Young Do;Park, Sungeun;Kang, Yoonmook;Lee, Haeseok;Kim, Donghwan
    • Korean Journal of Materials Research
    • /
    • v.24 no.6
    • /
    • pp.305-309
    • /
    • 2014
  • When sunlight irradiates a boron-doped p-type solar cell, the formation of BsO2i decreases the power-conversion efficiency in a phenomenon named light-induced degradation (LID). In this study, we used boron-doped p-type Cz-Si solar cells to monitor this degradation process in relation to irradiation wavelength, intensity and duration of the light source, and investigated the reliability of the LID effects, as well. When halogen light irradiated a substrate, the LID rate increased more rapidly than for irradiation with xenon light. For different intensities of halogen light (e.g., 1 SUN and 0.1 SUN), a lower-limit value of LID showed a similar trend in each case; however, the rate reached at the intensity of 0.1 SUN was three times slower than that at 1 SUN. Open-circuit voltage increased with increasing duration of irradiation because the defect-formation rate of LID was slow. Therefore, we suppose that sufficient time is needed to increase LID defects. After a recovery process to restore the initial value, the lower-limit open-circuit voltage exhibited during the re-degradation process showed a trend similar to that in the first degradation process. We suggest that the proportion of the LID in boron-doped p-type Cz-Si solar cells has high correlation with the normalized defect concentrations (NDC) of BsO2i. This can be calculated using the extracted minority-carrier diffusion-length with internal quantum efficiency (IQE) analysis.

Effect of Oxygen and Diborane Gas Ratio on P-type Amorphous Silicon Oxide films and Its Application to Amorphous Silicon Solar Cells

  • Park, Jin-Joo;Kim, Young-Kuk;Lee, Sun-Wha;Lee, Youn-Jung;Yi, Jun-Sin;Hussain, Shahzada Qamar;Balaji, Nagarajan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.4
    • /
    • pp.192-195
    • /
    • 2012
  • We reported diborane ($B_2H_6$) doped wide bandgap hydrogenated amorphous silicon oxide (p-type a-SiOx:H) films prepared by using silane ($SiH_4$) hydrogen ($H_2$) and nitrous oxide ($N_2O$) in a radio frequency (RF) plasma enhanced chemical vapor deposition (PECVD) system. We improved the $E_{opt}$ and conductivity of p-type a-SiOx:H films with various $N_2O$ and $B_2H_6$ ratios and applied those films in regards to the a-Si thin film solar cells. For the single layer p-type a-SiOx:H films, we achieved an optical band gap energy ($E_{opt}$) of 1.91 and 1.99 eV, electrical conductivity of approximately $10^{-7}$ S/cm and activation energy ($E_a$) of 0.57 to 0.52 eV with various $N_2O$ and $B_2H_6$ ratios. We applied those films for the a-Si thin film solar cell and the current-voltage characteristics are as given as: $V_{oc}$ = 853 and 842 mV, $J_{sc}$ = 13.87 and 15.13 $mA/cm^2$. FF = 0.645 and 0.656 and ${\eta}$ = 7.54 and 8.36% with $B_2H_6$ ratios of 0.5 and 1% respectively.