• Title/Summary/Keyword: P-removal

Search Result 3,654, Processing Time 0.031 seconds

Phosphorus Removal by Electrolysis with Aluminium Electrodes (알루미늄의 전기분해를 이용한 인 제거)

  • 정경훈;최형일;정오진;최칠남;정재경
    • Journal of Environmental Science International
    • /
    • v.9 no.1
    • /
    • pp.95-99
    • /
    • 2000
  • Laboratory experiments were performed to investigate the effects of various factors on the phosphorus removal by electrolysis with aluminium electrodes. The efficiency of phosphorus removal increases with increasing of voltage applied, surface area of electrodes and electrolyte concentration, and decreasing of electrode distance. The phosphorus removal was not affected by the connection number of an electric circuit. The amount of aluminium ion eluted from electrodes according to Faraday's law was 4.47 mg and the A/P mole ratio was 2.14 at the electric current value of 20 mA.

  • PDF

Effect of Pre-NH3 Stripping on the Advanced Sewerage Treatment by BNR (BNR에 의한 하수의 고도처리에 미치는 NH3 스트리핑 전처리의 영향)

  • Seo, Jeong-Beom;An, Kwang-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.846-850
    • /
    • 2006
  • The biological nutrient removal from domestic wastewater with low C/N ratio is difficult. Therefore, this study was performed to increase influent C/N ratio by ammonia stripping without required carbon source and for improving treatment efficiencies of sewerage by the combination process of ammonia stripping and BNR (StripBNR). The results of this study were summarized as follows. BOD removal efficiencies of BNR and StripBNR were 95.3% and 93.2%, respectively. T-N and T-P removal efficiencies of BNR were 53.3% and 40.8%, respectively. T-N and T-P removal efficiencies of StripBNR were 72.8% and 62.9%, respectively. Concentrations of $NH_3-N$, $NO_2-N$ and $NO_3-N$ at BNR effluent were 0.03 mg/L, 0.08 mg/L and 9.12 mg/L, respectively. On the other hands, concentrations of $NH_3-N$, $NO_2-N$ and $NO_3-N$ at StripBNR effluent were 5.79 mg/L, 0.01 mg/L and 0.14 mg/L, respectively. Consequently, influent C/N ratio of BNR process was increased by ammonia stripping. Removal efficiency of T-N and T-P was improved about 20% by the process of StripBNR.

Ammonia Removal Model Based on the Equilibrium and Mass Transfer Principles

  • Yoon, Hyein;Lim, Ji-Hye;Chung, Hyung-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.555-561
    • /
    • 2008
  • In air stripping of ammonia from the aqueous solution, a new removal model was presented considering the equilibrium principles for the ammonia in aqueous solution and between the aqueous and air phase. The effects of pH, temperature and airflow rate on the ammonia removal were evaluated with the model. In addition, the saturation degree of ammonia in air was defined and used to evaluate the effect of each experimental factor on the removal rate. As pH (8.9 to 11.9) or temperature (20 to 50 oC) was increased, the overall removal rate constants in all cases were appeared to be increased. Our presented model shows that the degrees of saturation were about the same (0.45) in all cases when the airflow condition remains the same. This result indicates that the effect of pH and temperature were directly taken into consideration in the model equation. As the airflow increases, the overall removal rate constants were increased in all cases as expected. However, the saturation degree was exponentially decreased with increasing the airflow rate in the air phase (or above-surface) aeration. In the subsurface aeration the saturation degree remains a constant value of 0.65 even though the airflow rate was increased. These results indicate that the degree of saturation is affected mainly by the turbulence of the aqueous solution and remains the same above a certain airflow rate.

Removal of Natural Organic Matter by Mixing Coagulants in Coagulation Process (응집공정에서 혼합응집제 주입에 의한 자연유기물질의 제거)

  • 명복태;우달식;최종현;이윤진;남상호
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.2
    • /
    • pp.60-66
    • /
    • 2001
  • Natural organic matters(NOMs) are found everywhere such as soil, surface and ground waters and consist of both humic and nonhumic components, and their heterogeneith makes each source unique. This study was carried to evaluate the removal characteristics of NOMs by mixing coagulants and the variation of apparent molecular weight distribution(AMWD) in coagulation process. Ratio of optimum coagulants dosage for removal of DOC and turbidity by mixing coagulants was 1.83 mM F $e^{3+}$/mM $Al^{3+}$. DOC removal increased at lower pH. The pH6 control focused on the removal of organic matters could reduce the amount of coagulant consumption by 2 to 3 times based on the pH8.5 of natural water. The dissolved organic matters in the natural water from the mid-stream of Han River were composed of the low molecular weight(LMW,<1 K) of 59.7%, and the medium and high molecular weight(M.HMW, 1~30 K) of 40.3%, respectively. At pH6, the DOC removal efficiencies of LMW(<1 K) and M.HMW(1~30 K) in coagulation process were 27~35%, 62~72%, respectively. The fraction smaller than 1 K was not eliminated to a noticeable degree, while the fraction of 1~30 K was relatively well removed. In conclustion, mixing coagulants were fairly effective in the removal of natural organic matter.r.

  • PDF

Effect of Recycling Time on Stability of Colloidal Silica Slurry and Removal Rate in Silicon Wafer Polishing (연마 Recycling 시간에 따른 콜로이드 실리카 슬러리의 안정성 및 연마속도)

  • Choi, Eun-Suck;Bae, So-Ik
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.2 s.297
    • /
    • pp.98-102
    • /
    • 2007
  • The stability of slurry and removal rate during recycling of colloidal silica slurry was evaluated in silicon wafer polishing. The particle size distribution, pH, and zeta potential were measured to investigate the stability of colloidal silica. Large particles appeared as recycling time increased while average size of slurry did not change. Large particles were identified by EDS(energy dispersive spectrometer) as foreign substances from pad or abraded silicon flakes during polishing. As the recycling time increased, pH of slurry decreased and removal rate of silicon reduced but zeta potential decreased inversely. Hence, it could be mentioned that decrease of removal rate is related to consumption of $OH^-$ ions during recycling. Attention should be given to the control of pH of slurry during polishing.

THE REMOVAL OF HEAVY METALS USING HYDROXYAPATITE

  • Lee, Chan-Ki;Kim, Hae-Suk;Kwon, Jae-Hyuk
    • Environmental Engineering Research
    • /
    • v.10 no.5
    • /
    • pp.205-212
    • /
    • 2005
  • The study was conducted to investigate the removal of heavy metals by using Hydroxyapatite(HAp) made from waste oyster shells and wastewater with high concentration of phosphorus. The maximum calcium concentration for the production of HAp in this study was released up to 361 mg/L at pH of 3 by elution experiments. When the pH was at adjusted 6, the maximum calcium released concentration was 41 mg/L. During the elution experiment, most of the calcium was released within 60 minutes. This reaction occurred at both pH levels of 3 and 6. The result of the XRD analysis for the HAp product used in this study shows the main constituent was HAp, as well as OCP. The pH was 8.6. As the temperature increased, the main constituent did not vary, however its structure was crystallized. When the pH was maintained at 3, the removal efficiency decreased as the heavy metal concentration increased. The order of removal efficiency was as follows: $Fe^{2+}$(92%), $Pb^{2+}$(92%) > $Cu^{2+}$(20%) > $Cd^{2+}$(0%). Most of these products were dissolved and did not produce sludge in the course of heavy metals removal. As the heavy metal concentration increased at pH of 6, the removal efficiency increased. The removal efficiencies in all heavy metals were over 80%. From the analysis of the sludge after reaction with heavy metals, the HAp was detected and the OCP peak was not observed. Moreover, lead ion was observed at the peaks of lead-Apatite and lead oxidant. In the case of cadmium, copper and iron ions, hydroxide forms of each ion were also detected.

Optimized cultivation of Ettlia sp. YC001 in eutrophic pond water for nutrient removal and biomass production

  • Oh, Hyung-Seok;Ahn, Chi-Yong;Srivastava, Ankita;Oh, Hee-Mock
    • ALGAE
    • /
    • v.33 no.4
    • /
    • pp.319-327
    • /
    • 2018
  • Ettlia sp. YC001, a highly settleable and productive microalga, was shown to be effective in removing nutrients and capturing suspended solids from eutrophic pond water. The optimum conditions for the Ettlia sp. YC001 cultivation were investigated using water from a landscape pond. The pond water was supplemented with different N : P ratios by weight, and the biomass production and nutrient removal compared in batch cultures. The maximum removal rate of N and P was with an N : P ratio of 16 : 1. Plus, the turbidity dropped to near zero within 4 days. Meanwhile, chemostat cultivation showed that the biomass productivity and nutrient removal rate increased when increasing the dilution rate, where a dilution rate of $0.9d^{-1}$ showed the highest N and P removal rate at $32.4mg\;L^{-1}\;d^{-1}$ and $1.83mg\;L^{-1}\;d^{-1}$, respectively, and highest biomass and lipid productivity at $0.432g\;L^{-1}\;d^{-1}$ and $67.8mg\;L^{-1}\;d^{-1}$, respectively. The turbidity was also reduced by 98% in the chemostat cultivation. Moreover, auto-flocculation and pH were closely connected to the turbidity removal. As a result, this study identified the optimal N : P ratio for small pond water treatment using an Ettlia sp. YC001, while also establishing the optimal conditions for nutrient removal, turbidity reduction, and biomass production.

Removal of Tetrachloroethylene using Advanced Oxidation Processes (고급산화법을 이용한 Tetrachloroethylene의 처리)

  • Shin, Hang-Sik;Lim, Jae-Lim
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.4
    • /
    • pp.64-72
    • /
    • 1996
  • The effect of $O_3$, $O_3/pH$, and $O_3/H_2O_2$, $O_3/UV$, and $H_2O_2/UV$ advanced oxidation process(AOP) were investigated for the treatment of tetrachloroethylen(PCE) at various condition. The removal efficiency of 10, 20, and 30ppm PCE by ozonation were almost same, only about 60%. And pseudo first-order rate constants, ko for overall oxidation was about 0.097($min^{-1}$). In the $O_3/pH$ AOP experiment for the 20ppm PCE, the removal rate of PCE increased with the increase of pH. However, mineralization rate of PCE at pH 7 was higher than at pH 10. In the $O_3/H_2O_2$ AOP, the removal rate of PCE was the highest at peroxide-to-ozone dosage ratio of about 0.9, which PCE was removed over 99.95%. Despite 42% of PCE was directly photolyzed by the UV irradiation, the removal efficiency of PCE by $O_3/UV$ AOP was only about 70%. In $H_2O_2/UV$ AOP, the removal efficiency of PCE increased to about 98% in proportion to the $H_2O_2$ injection concentration at constant UV intensity of 5W/l.

  • PDF

Factors affecting Phosphorus removal in BNR process applied Moving Bed Biofilm (유동상 생물막법을 적용한 BNR공법에서의 인제거 영향인자)

  • Park, Woon-Ji;Kim, Dong-Oog;Lee, Chan-Ki
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.3-10
    • /
    • 2006
  • In this study, the of MBBR(moving bed biofilm reactor) process for Phosphorus Removal efficiency depending on seasons and the factors affecting phosphorus removal efficiency in the process is evaluated. As a result of experiment, T-P removal efficiency has its highest value in winter, (80.8%). and T-P removal efficiency has its lowest value in autumn, (49%). Optimum SRT for Phosphorus Removal revealed is about 8.8 days and process performs more efficiently as the temperature decreases. It is accepted that nitrate to anaerobic zone is affecting the Phosphorus removal process. With increasing the organic loading rate, Phosphorus removal efficiency also increases. Also, an experiment has been conducted to find out the highest efficiency according to Media existence and it has revealed that Media addition provides better phosphate removal.

  • PDF

Influence of recycling time on stability of slurry and removal rate for silicon wafer polishing (Recycle 시간에 따른 실리콘 연마용 슬러리 입자 및 연마 속도)

  • Choi, Eun-Suck;Bae, So-Ik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.59-60
    • /
    • 2006
  • The slurry stability and removal rate during recycling of slurry in silicon wafer polishing was studied. Average abrasive size of slurry was not changed with recycling time, however, large particles appeared as recycling time increased. Large particles were related foreign substances from pad or abraded silicon flakes during polishing. The removal rate as well as pH of slurry was decreased as recycling time increased. It suggests that the consumption of OH ions during recycling is the main cause of decrease of removal rate. Therefore, it is important to control pH of slurry to obtain optimum removal rate during polishing.

  • PDF