Browse > Article
http://dx.doi.org/10.4490/algae.2018.33.12.9

Optimized cultivation of Ettlia sp. YC001 in eutrophic pond water for nutrient removal and biomass production  

Oh, Hyung-Seok (Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology)
Ahn, Chi-Yong (Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology)
Srivastava, Ankita (Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology)
Oh, Hee-Mock (Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology)
Publication Information
ALGAE / v.33, no.4, 2018 , pp. 319-327 More about this Journal
Abstract
Ettlia sp. YC001, a highly settleable and productive microalga, was shown to be effective in removing nutrients and capturing suspended solids from eutrophic pond water. The optimum conditions for the Ettlia sp. YC001 cultivation were investigated using water from a landscape pond. The pond water was supplemented with different N : P ratios by weight, and the biomass production and nutrient removal compared in batch cultures. The maximum removal rate of N and P was with an N : P ratio of 16 : 1. Plus, the turbidity dropped to near zero within 4 days. Meanwhile, chemostat cultivation showed that the biomass productivity and nutrient removal rate increased when increasing the dilution rate, where a dilution rate of $0.9d^{-1}$ showed the highest N and P removal rate at $32.4mg\;L^{-1}\;d^{-1}$ and $1.83mg\;L^{-1}\;d^{-1}$, respectively, and highest biomass and lipid productivity at $0.432g\;L^{-1}\;d^{-1}$ and $67.8mg\;L^{-1}\;d^{-1}$, respectively. The turbidity was also reduced by 98% in the chemostat cultivation. Moreover, auto-flocculation and pH were closely connected to the turbidity removal. As a result, this study identified the optimal N : P ratio for small pond water treatment using an Ettlia sp. YC001, while also establishing the optimal conditions for nutrient removal, turbidity reduction, and biomass production.
Keywords
biomass; Ettlia; landscape pond; nutrient removal; water treatment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Arnold, M. 2013. Sustainable algal biomass products by cultivation in waste water flows. VTT Technol. 147:1-84.
2 Bligh, E. G. & Dyer, W. J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37:911-917.   DOI
3 Cembella, A. D., Antia, N. J. & Harrison, P. J. 1982. The utilization of inorganic and organic phosphorous compounds as nutrients by eukaryotic microalgae: a multidisciplinary perspective: part I. CRC Crit. Rev. Microbiol. 10:317-391.   DOI
4 Chun, S. -J., Cui, Y., Ahn, C. -Y. & Oh, H. -M. 2018. Improving water quality using settleable microalga Ettlia sp. and bacterial community in freshwater recirculating aquaculture system of Danio rerio. Water Res. 135:112-121.   DOI
5 Oh, H. -S., Lee, C. S., Srivastava, A., Oh, H. -M. & Ahn, C. -Y. 2017. Effects of environmental factors on cyanobacterial production of odorous compounds: geosmin and 2-methylisoborneol. J. Microbiol. Biotechnol. 27:1316-1323.   DOI
6 Park, M. K., Lee, S. J., Suh, H. -H., Kim, H. -S., Kim, Y. H., Yoon, B. -D. & Oh, H. -M. 1998. Advanced treatment of swine wastewater by a green alga, Scenedesmus quadricauda. Algae 13:227-233.
7 Pignolet, O., Jubeau, S., Vaca-Garcia, C. & Michaud, P. 2013. Highly valuable microalgae: biochemical and topological aspects. J. Ind. Microbiol. Biotechnol. 40:781-796.   DOI
8 Rhee, G.-Y. 1978. Effects of N:P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake. Limnol. Oceanogr. 23:10-25.   DOI
9 Randrianarison, G. & Ashraf, M. A. 2017. Microalgae: a potential plant for energy production. Geology, Ecology, and Landscapes 1:104-120.   DOI
10 Rezvani, F., Sarrafzadeh, M. -H., Seo, S. -H. & Oh, H. -M. 2017. Phosphorus optimization for simultaneous nitrate-contaminated groundwater treatment and algae biomass production using Ettlia sp. Bioresour. Technol. 244:785-792.   DOI
11 Rhee, G.-Y. & Gotham, I. J. 1980. Optimum N:P ratios and coexistence of planktonic algae. J. Phycol. 16:486-489.   DOI
12 Salim, S., Kosterink, N. R., Tchetkoua Wacka, N. D., Vermue, M. H. & Wijffels, R. H. 2014. Mechanism behind autoflocculation of unicellular green micro algae Ettlia texensis. J. Biotechnol. 174:34-38.   DOI
13 Scott, S. A., Davey, M. P., Dennis, J. S., Horst, I., Howe, C. J., Lea-Smith, D. J. & Smith, A. G. 2010. Biodiesel from algae: challenges and prospects. Curr. Opin. Biotechnol. 21:277-286.   DOI
14 Singh, D., Nedbal, L. & Ebenhöh, O. 2018. Modelling phosphorus uptake in microalgae. Biochem. Soc. Trans. 46:483-490.   DOI
15 Acien, F. G., Gomez-Serrano, C., Morales-Amaral, M. M., Fernandez-Sevilla, J. M. & Molina-Grima, E. 2016. Wastewater treatment using microalgae: how realistic a contribution might it be to significant urban wastewater treatment? Appl. Microbiol. Biotechnol. 100:9013-9022.   DOI
16 De-Bashan, L. E., Hernandez, J. -P., Morey, T. & Bashan, Y. 2004. Microalgae growth-promoting bacteria as "helpers" for microalgae: a novel approach for removing ammonium and phosphorus from municipal wastewater. Water Res. 38:466-474.   DOI
17 Hammed, A. M., Prajapati, S. K., Simsek, S. & Simsek, H. 2016. Growth regime and environmental remediation of microalgae. Algae 31:189-204.   DOI
18 Heisler, J., Glibert, P. M., Burkholder, J. M., Anderson, D. M., Cochlan, W., Dennison, W., Dortch, Q., Gobler, C. J., Heil, C. A., Humphries, E., Lewitus, A., Magnien, R., Marshall, H. G., Sellner, K., Stockwell, D. A., Stoecker, D. K. & Suddleson, M. 2008. Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae 8:3-13.   DOI
19 Solovchenko, A., Verschoor, A. M., Jablonowski, N. D. & Nedbal, L. 2016. Phosphorus from wastewater to crops: an alternative path involving microalgae. Biotechnol. Adv. 34:550-564.   DOI
20 Stanier, R. Y., Kunisawa, R., Mandel, M. & Cohen-Bazire, G. 1971. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol. Rev. 35:171-205.
21 Lee, N., Ko, S. -R., Ahn, C. -Y. & Oh, H. -M. 2018. Optimized co-production of lipids and carotenoids from Ettlia sp. by regulating stress conditions. Bioresour. Technol. 258:234-239.   DOI
22 Kim, C. -J., Jung, Y. -H., Ahn, C. -Y., Lee, Y. -K. & Oh, H. -M. 2010. Adsorption of turbid materials by the cyanobacterium Phormidium parchydematicum. J. Appl. Phycol. 22:181-186.   DOI
23 Klausmeier, C. A., Litchman, E., Daufresne, T. & Levin, S. A. 2004. Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature 429:171-174.   DOI
24 La, H. -J., Seo, S. -H., Lee, J. -Y., Lee, C. S., Kim, B. -H., Srivastava, A., Han, M. -S. & Oh, H. -M. 2016. Improved mixing efficiency and biomass productivity of Ettlia sp. in cocultivation system with loaches. Algal Res. 17:300-307.   DOI
25 Oh, H. -M., Lee, S. J., Jang, M. -H. & Yoon, B. -D. 2000. Microcystin production by Microcystis aeruginosa in a phosphorus-limited chemostat. Appl. Environ. Microbiol. 66:176-179.   DOI
26 Yoo, C., Choi, G. -G., Kim, S. -C. & Oh, H. -M. 2013. Ettlia sp. YC001 showing high growth rate and lipid content under high $CO_2$. Bioresour. Technol. 127:482-488.   DOI
27 Whitton, R., Le Mevel, A., Pidou, M., Ometto, F., Villa, R. & Jefferson, B. 2016. Influence of microalgal N and P composition on wastewater nutrient remediation. Water Res. 91:371-378.   DOI
28 Woertz, I., Fulton, L. & Lundquist, T. 2009. Nutrient removal & greenhouse gas abatement with $CO_2$ supplemented algal high rate ponds. In Annual Conference of Water Environment Federation, Water Environment Federation, Alexandria, VA, p. 13.
29 Wu, Y. -H., Yu, Y., Li, X., Hu, H. -Y. & Su, Z. -F. 2012. Biomass production of a Scenedesmus sp. under phosphorousstarvation cultivation condition. Bioresour. Technol. 112:193-198.   DOI
30 Yoo, C., La, H. -J., Kim, S. -C. & Oh, H. -M. 2015. Simple processes for optimized growth and harvest of Ettlia sp. by pH control using $CO_2$ and light irradiation. Biotechnol. Bioeng. 112:288-296.   DOI
31 Zhang, G. & Wang, Z. 2000. Mechanism study of the coagulant impact on mutagenic activity in water. Water Res. 34:1781-1790.   DOI