• 제목/요약/키워드: P-doped ZnO

검색결과 132건 처리시간 0.039초

n-ZnO/p-Zn doped InP의 p-n 이종접합 형성에 관한 연구 (p-n heterojunction composed of n-ZnO/p-Zn-doped InP)

  • 심은섭;강홍성;강정석;방성식;이상렬
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.126-129
    • /
    • 2001
  • A p-n junction was obtained by the deposition of an n-type ZnO thin film on a p-type Zn-doped InP substrate. The Zn-doped InP substrate has been made by the diffusion of Zn with sealed ampoule technique. The ZnO deposition process was performed by pulsed laser deposition (PLD). The p-n junction was formed and showed a typical I-V characteristic. We will also discuss about the realization of an ultraviolet light-emitting diode (LED). The structure of n-ZnO/p-Zn-doped InP could be a good candidate for the realization of an ultraviolet light-emitting diode or an ultraviolet laser diode.

  • PDF

n-ZnO/p-Zn doped InP의 p-n 이종접합 형성에 관한 연구 (p-n heterojunction composed of n-ZnO/p-Zn-doped InP)

  • 심은섭;강홍성;강정석;방성식;이상렬
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.126-129
    • /
    • 2001
  • A p-n junction was obtained by the deposition of an n-type ZnO thin film on a p-type Zn-doped InP substrate. The Zn-doped InP substrate has been made by the diffusion of Zn with sealed ampoule technique. The ZnO deposition process ws performed by pulsed laser deposition (PLD). The p-n junction was formed and showed a typical I-V characteristic. We will also discuss about the realization of an ultraviolet light-emitting diode (LED). The structure of n-ZnO/p-Zn-doped InP could be a good candidate for the realization of an ultraviolet light-emitting diode or an ultraviolet laser diode.

  • PDF

Electrical and optical properties of Li & P co-doped ZnO thin film by PLD

  • Choi, Im-Sic;Kim, Don-Hyeong;Heo, Young-Woo;Lee, Joon-Hyung;Kim, Jeong-Joo
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.209-209
    • /
    • 2009
  • Fabrication of p-type ZnO has already proven difficult and usually inconsistent despite numerous worldwide efforts. Many research groups studied electrical and optical properties P, Li, As, N single doped ZnO thin film. In P-doped ZnO thin film, the reproducibility of p-type conduction with $P_2O_5$ as a dopant source was shown to be relatively poor. In this study, we made P single doped and Li & P co-doped ZnO target. To investigate electrical and optical properties of P single doped and Li & P co-doped ZnO thin film using $P_2O_5$ and $Li_3PO_4$ dopant source respectively was deposited by PLD. The growth temperature was changed 500, $700^{\circ}C$ and various oxygen partial pressure and post-annealing conditions was changed temperature, different gas ambient($O_2,N_2$). We investigate that how to change electrical and optical properties as function of growth temperature, oxygen partial pressure and post-annealing(RTA).

  • PDF

p-n Heterojunction Composed of n-ZnO/p-Zn-doped InP

  • Shim, Eun-Sub;Kang, Hong-Seong;Kang, Jeong-Seok;Pang, Seong-Sik;Lee, Sang-Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • 제3권1호
    • /
    • pp.1-3
    • /
    • 2002
  • A p-n junction was obtained by the deposition of an n-type ZnO thin film on a p-type Zn-doped InP substrate. The Zn-doped InP substrate has been made by the diffusion of Zn with sealed ampoule technique. The ZnO deposition process was performed by pulsed laser deposition (PLD). The p-n junction was formed and showed typical I-V characteristics. We will also discuss about the realization of an ultraviolet light-emitting diode (LED). The structure of n-ZnO/p-Zn-doped InP could be a good candidate for the realization of an ultraviolet light-emitting diode or an ultraviolet laser diode.

열처리 온도에 따른 P-doped ZnO 박막의 구조적 및 전기적 특성 (Structure and Electrical Properties of P-doped ZnO Thin Films with Annealing Temperatures)

  • 한정우;윤영섭;강성준;정양희
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.501-502
    • /
    • 2008
  • In this study, P-doped ZnO thin films were prepared on sapphire substrates by pulsed laser deposition and annealing method. The electrical properties were investigated as a function of annealing temperatures at a fixed oxygen pressure. The XRD measurement showed that p-doped ZnO thin films were c-axis oriented. The Hall measurement showed that p-type ZnO thin film was observed. The carrier concentration of $1.18{\times}10^{16}cm^{-3}$ and the mobility of $0.96\;cm^{-3}/Vs$ were obtained for the P-doped ZnO thin film fabricated annealing temperature $850^{\circ}C$.

  • PDF

PLD 법으로 증착된 n-ZnO:In/p-Si (111) 이종접합구조의 특성연구 (A Study on the Characteristic of n-ZnO:In/p-Si (111) Heterostructure by Pulsed Laser Deposition)

  • 장보라;이주영;이종훈;김준제;김홍승;이동욱;이원재;조형균;이호성
    • 한국전기전자재료학회논문지
    • /
    • 제22권5호
    • /
    • pp.419-424
    • /
    • 2009
  • ZnO films doped with different contents of indium ($0.1{\sim}10$ at.%) were deposited on Si (111) substrate by Pulsed Laser Deposition (PLD). The structural, electrical and optical properties of the films were investigated using XRD, AFM, Hall and PL measurement. Results showed that un-doped ZnO film had (002) plane as the c-axis orientated growth, whereas indium doped ZnO films exhibited the peak of (002) and the weak (101) plane. In addition, in the indium doped ZnO films, the electron concentration is ten times higher than that of un-doped ZnO film, while the resistivity is ten times lower than that of un-doped ZnO film. The indium doped ZnO films have UV emission about 380 nm and show a red shift with increasing contents of indium. The I-V curve of the fabricated diode show the typical diode characteristics and have the turn on voltage of about 2 V.

다층 구조를 이용한 Phosphorus 도핑된 ZnO 박막 제작 (Fabrication of phosphorus doped ZnO thin film using multi-layer structure)

  • 강홍성;임성훈;장현우;김건희;김종훈;이상렬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.27-29
    • /
    • 2005
  • ZnO and phosphorus doped ZnO thin films (ZnO:P) are deposited by pulsed laser deposition grown on (001) $Al_{2}O_{3}$. ZnO/ZnO:P/ZnO/$Al_{2}O_{3}$ (multi-layer) structure was used for phosphorus doped ZnO fabrication. This multi-layer structure thin film was annealed at $400^{\circ}C$ for 40 min. The electron concentration of that was changed from $10^{19}$ to $10^{16}/cm^{-3}$ after annealing. ZnO thin films with encapsulated structure showed the enhanced structural and optical properties than phosphorus doped ZnO without encapsulated layer. In this study, encapsulated ZnO structure was suggested to enhance electrical, structural and optical properties of phosphorus doped ZnO thin film and it was identified that encapsulated structure could be used to fabricate high quality phosphorus doped ZnO thin film.

  • PDF

Photoluminescence properties of N-doped and nominally undoped p-type ZnO thin films

  • Jin, Hu-Jie;Jeong, Yun-Hwan;Park, Choon-Bae
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 춘계학술대회 및 기술 세미나 논문집 디스플레이 광소자
    • /
    • pp.65-66
    • /
    • 2008
  • The realization and origin of p-type ZnO are main issue for photoelectronic devices based on ZnO material. N-doped and nominally undoped p-type ZnO films were achieved on silicon (100) and homo-buffer layers by RF magnetron sputtering and post in-situ annealing. The undoped film shows high hole mobility of 1201 $cm^2V^{-1}s^{-1}$ and low resistivity of $0.0454\Omega{\cdot}cm$ with hole concentration of $1.145\times10^{17}cm^{-3}$. The photoluminescence(PL) spectra show the emissions related to FE, DAP and defects of $V_{Zn}$, $V_O$, $Zn_O$, $O_i$ and $O_{Zn}$.

  • PDF

Work function variation of doped ZnO nanorods by Kelvin probe force microscopy

  • Ben, Chu Van;Hong, Min-Chi;Yang, Woo-Chul
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.446-446
    • /
    • 2011
  • One dimensional (1-D) structures of ZnO nanorods are promising elements for future optoelectronic devices. However there are still many obstacles in fabricating high-quality p-type ZnO up to now. In addition, it is limited to measure the degree of the doping concentration and carrier transport of the doped 1-D ZnO with conventional methods such as Hall measurement. Here we demonstrate the measurement of the electronic properties of p- and n-doped ZnO nanorods by the Kelvin probe force microscopy (KPFM). Vertically aligned ZnO nanorods with intrinsic n-doped, As-doped p-type, and p-n junction were grown by vapor phase epitaxy (VPE). Individual nanowires were then transferred onto Au films deposited on Si substrates. The morphology and surface potentials were measured simultaneously by the KPFM. The work function of the individual nanorods was estimated by comparing with that of gold film as a reference, and the doping concentration of each ZnO nanorods was deduced. Our KPFM results show that the average work function difference between the p-type and n-type regions of p-n junction ZnO nanorod is about ~85meV. This value is in good agreement with the difference in the work function between As-doped p- and n-type ZnO nanorods (96meV) measured with the same conditions. This value is smaller than the expected values estimated from the energy band diagram. However it is explained in terms of surface state and surface band bending.

  • PDF

N-doped ZnO 박막의 미세 구조 특성 (Nano-structural Characteristics of N-doped ZnO Thin Films)

  • 이은주;;박재돈;윤기완
    • 한국정보통신학회논문지
    • /
    • 제13권11호
    • /
    • pp.2385-2390
    • /
    • 2009
  • 본 연구에서는 C-축 우선 배향 특성을 가지는 N-doped ZnO 박막을 증착하고 그 미세구조의 특성을 분석 비교하였다. ZnO박막은 $N_2O$ 가스 분위기에서 RF reactive magnetron sputtering 시스템을 사용하여 p-Si(100) 웨이퍼 위에 증착되었다. $N_2O$ 가스는 N doping source로 사용되었으며, 전체 가스 유량에 대한 $N_2O$ 가스의 비율 $N_2O/(N_2O+Ar)$과 증착 전력을 증착의 주요 공정 변수로 선택하여 다양한 가스 비율과 증착 전력에 대한 박막의 미세 구조 특성을 비교 분석하였다. 특히, Auger electron spectroscopy (AES)를 이용하여 ZnO 박막 내에 들어가 존재하는 불순물 N의 수직분포를 분석하였고, 여러 가지 증착 조건에서 제작된 ZnO 박막의 표면형상 및 미세구조 특성을 Scanning Electron Microscope (SEM)를 이용하여 분석하였다.