• Title/Summary/Keyword: P depletion

Search Result 356, Processing Time 0.037 seconds

Depletion of Nitrite by Lactic Acid Bacteria Isolated from Kimchi(II) (김치에서 분리한 유산균에 의한 아질산염 소모(II))

  • 오창경;오명철;현재석;최우정;이신호;김수현
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.4
    • /
    • pp.556-562
    • /
    • 1997
  • Depletion of nitrite by lactic acid bacteria isolated from Kimchi and the effects of pH and temperature on depletion of nitrite in Lactobacillus MRS broth were investigated. Depletion of nitrite by Lactobacillus plantarum and Lactobacillus sake was low in initial stage of growth but increased during growth at 15 and 2$0^{\circ}C$. L. plantarum and L. sake depleted than 90 and 75% of nitrite(250$\mu\textrm{g}$/$m\ell$) in 1 day of growth at 25 and 3$0^{\circ}C$, respectively, but depleted almost all of nitrite in 2 days. While the effect of Leuconostoc mesenteroides (150$\mu\textrm{g}$/$m\ell$) was lower compared to Lactobacillus(250$\mu\textrm{g}$/$m\ell$). In addition, even high concentrations(600 and 900 $\mu\textrm{g}$/$m\ell$) of nitrite was depleted at 2 days of growth by L. plantarum. pH of growing broth decreased as the increase of growth time and temperature, and depletion of nitrite in- creased as the decrease of pH of growing culture. However, pH of broth related with the decrease of depletion of nitrite at 25 and 3$0^{\circ}C$, but not at 15 and 2$0^{\circ}C$. Therefore, depletion of nitrite was greatly affected by growth temperature rather than by pH.

  • PDF

Determination of the Depletion Depth of the Deep Depletion Charge-Coupled Devices

  • Kim Man-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.233-236
    • /
    • 2006
  • A 3-D numerical simulation of a buried-channel CCD (Charge Coupled Device) with a deep depletion has been performed to investigate its electrical and physical behaviors. Results are presented for a deep depletion CCD (EEV CCD12; JET-X CCD) fabricated on a high-resistivity $(1.5k\Omega-cm)\;65{\mu}m$ thick epi-layer, on a $550{\mu}m$ thick p+ substrate, which is optimized for X-ray detection. Accurate predictions of the Potential minimum and barrier height of a CCD Pixel as a function of mobile electrons are found to give good charge transfer. The depletion depth approximation as a function of gate and substrate bias voltage provided average errors of less than 6%, compared with the results estimated from X-ray detection efficiency measurements. The result obtained from the transient simulation of signal charge movement is also presented based on 3-Dimensional analysis.

The function of zinc in the primary vascular smooth muscle cell proliferation in rats (아연의 1차혈관평활근세포 증식에 대한 기능)

  • Cho, Young-Eun;Kwun, In-Sook
    • Journal of Nutrition and Health
    • /
    • v.53 no.6
    • /
    • pp.563-569
    • /
    • 2020
  • Purpose: The vascular smooth muscle cells (VSMCs) in mature animals have implicated to play a major role in the progression of cardiovascular diseases such as atherosclerosis. This study aimed at optimizing the protocol in culturing primary VSMCs (pVSMCs) from rat thoracic aorta and investigating the effect of cellular zinc (Zn) deficiency on cell proliferation of the isolated pVSMCs. Methods: The thoracic aorta from 7-month-old Sprague Dawley rats was isolated, minced and digested by the enzymatic process of collagenase I and elastase, and then inoculated with the culture Dulbecco Modified Eagle Medium (DMEM) at 37℃ in an incubator. The primary cell culture morphology was observed using phase-contrast microscopy and cellular Zn was depleted using Chelex-100 resin (extracellular zinc depletion only) or 3 µM N,N,N',N'-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine (TPEN) (extracellular and intracellular zinc depletion). Western blot analysis was used for the detection of SM22α and calponin as smooth muscle cell marker proteins and von Willebrand factor as endothelial cell marker protein to detect the culture purity. Cell proliferation by Zn depletion (1 day) was measured by MTT assay. Results: A primary culture protocol for pVSMCs from rat thoracic aorta was developed and optimized. Isolated cultures exhibited hill and valley morphology as the major characteristics of pVSMCs and expressed the smooth muscle cell protein markers, SM22α and calponin, while the endothelial marker von Willebrand factor was hardly detected. Zn deprivation for 1 day culture decreased rat primary vascular smooth muscle cell proliferation and this pattern was more prominent under severe Zn depletion (3 µM TPEN), while less prominent under mild Zn depletion (Chelexing). Conclusion: Our results suggest that cellular Zn deprivation decreased pVSMC proliferation and this may be involved in phenotypic modulation of pVSMC in the aorta.

The Effect of Drought Simulated by Discharge Control on Water Quality and Benthic Diatom Community in the Indoor Experimental Channel (인공하천에서 유량감소로 모사한 가뭄효과가 수질 및 부착돌말류 군집에 미치는 영향)

  • Park, Hye-Jin;Kim, Baik-Ho;Kong, Dong-Soo;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.1
    • /
    • pp.129-138
    • /
    • 2012
  • We investigated an ecological impact of drought simulated by discharge depletion on the water quality and benthic diatom community in the indoor experimental channel. As artificial substrates slide-glass was installed in acrylic channel for 16 days. Channels were supplied continuously with eutrophic lake water with a discharge rate of 6 L $min^{-1}$ in duplication during the colonized period. And then during the discharge depletion period, three discharge rates were provided: NDF (No depletion of flow rate (Control): 6 L $min^{-1}$), LDF (Low depletion of flow rate: 3 L $min^{-1}$) and HDF (High depletion of flow rate: 1 L $min^{-1}$). Environmental factors in the water, such as suspended solid, Chl-$a$ and nutrients concentration, were measured with periphytic algae including AFDM (ash free dry matter), Chl-$a$ concentration and cell density at 1-day intervals. Light intensity increased significantly with discharge depletion (F=229.5, p= 0.000). $NH_4$-N concentration was highest at HDF. Suspended solid in outflowing water decreased at HDF (88%), LDF (97%) and NDF (99%), compared to inflowing water (100 %). Chl-$a$ in substrates increased more than two times at LDF and HDF than NDF (F= 8.399, p=0.001). Also AFDM and benthic diatom density increased significantly at LDF and HDF than NDF (F=9.390, p=0.001; F=6.088, p=0.007). In all experimental groups, $Aulacoseira$ $ambigua$, $Achnanthes$ $minutissima$ and $Aulacoseira$ $granulata$ were dominant species accounting for greater than 10% of benthic diatom density. The most dominant species, $A.$ $ambigua$ was highest at LDF, followed by HDF and NDF (F=8.551, p=0.001). In conclusion, the effect of drought simulated by discharge depletion in an artificial stream ecosystem caused significant changes on water quality and benthic diatom biomass. This result provides a useful data to understand the effect of draught on stream ecosystem in situ.

Effect of trimethyl-indium source depletion on InGaAsP epilayer grown by MOCVD (Trimethyl-indium 소스 고갈에 따른 InGaAsP 에피층의 특성 변화)

  • 김현수;오대곤;편광의;최인훈
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.4
    • /
    • pp.400-405
    • /
    • 2000
  • We investigated the effect of TMIn (trimethly-indium) source depletion on InGaAs, InGaAsP and 1.55 $\mu\textrm{m}$ InGaAs/InGaAsP SMQW by using EPISON ultrasonic monitor for measuring the concentration of metalorganic/carrier gas mixtures. And the problems for the growth reproducibility in MOCVD was solved by using an EPISON ultrasonic monitor with closed-loop mode under the condition of TMIn source depletion. The saturation pressure of TMIn was dramatically decreased over consumption of 80%. In the case of bulk epilayer, Up-shifting of 300 arcsec to Ga-rich direction and FWHM broadening by a factor of two in DCXRD spectrum were observed due to the TMIn source depletion. In the case of SMQW, Up-shifting of 300 arcsec to Ga-rich direction in DCXRD spectrum and blue-shift of 40 nm in PL spectrum were observed due to the TMIn source depletion. However, good reproducibility ($\Delta\theta$<$\pm$100 arcsec) was achieved even the condition of 95% of TMIn consumption, when we used the EPISON with closed-loop mode.

  • PDF

Compact Model of a pH Sensor with Depletion-Mode Silicon-Nanowire Field-Effect Transistor

  • Yu, Yun Seop
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.4
    • /
    • pp.451-456
    • /
    • 2014
  • A compact model of a depletion-mode silicon-nanowire (Si-NW) pH sensor is proposed. This drain current model is obtained from the Pao-Sah integral and the continuous charge-based model, which is derived by applying the parabolic potential approximation to the Poisson's equation in the cylindrical coordinate system. The threshold-voltage shift in the drain-current model is obtained by solving the nonlinear Poisson-Boltzmann equation for the electrolyte. The simulation results obtained from the proposed drain-current model for the Si-NW field-effect transistor (SiNWFET) agree well with those of the three-dimensional (3D) device simulation, and those from the Si-NW pH sensor model also agree with the experimental data.

SF3B4 Depletion Retards the Growth of A549 Non-Small Cell Lung Cancer Cells via UBE4B-Mediated Regulation of p53/p21 and p27 Expression

  • Kim, Hyungmin;Lee, Jeehan;Jung, Soon-Young;Yun, Hye Hyeon;Ko, Jeong-Heon;Lee, Jeong-Hwa
    • Molecules and Cells
    • /
    • v.45 no.10
    • /
    • pp.718-728
    • /
    • 2022
  • Splicing factor B subunit 4 (SF3B4), a component of the U2-pre-mRNA spliceosomal complex, contributes to tumorigenesis in several types of tumors. However, the oncogenic potential of SF3B4 in lung cancer has not yet been determined. The in vivo expression profiles of SF3B4 in non-small cell lung cancer (NSCLC) from publicly available data revealed a significant increase in SF3B4 expression in tumor tissues compared to that in normal tissues. The impact of SF3B4 deletion on the growth of NSCLC cells was determined using a siRNA strategy in A549 lung adenocarcinoma cells. SF3B4 silencing resulted in marked retardation of the A549 cell proliferation, accompanied by the accumulation of cells at the G0/G1 phase and increased expression of p27, p21, and p53. Double knockdown of SF3B4 and p53 resulted in the restoration of p21 expression and partial recovery of cell proliferation, indicating that the p53/p21 axis is involved, at least in part, in the SF3B4-mediated regulation of A549 cell proliferation. We also provided ubiquitination factor E4B (UBE4B) is essential for p53 accumulation after SF3B4 depletion based on followings. First, co-immunoprecipitation showed that SF3B4 interacts with UBE4B. Furthermore, UBE4B levels were decreased by SF3B4 depletion. UBE4B depletion, in turn, reproduced the outcome of SF3B4 depletion, including reduction of polyubiquitinated p53 levels, subsequent induction of p53/p21 and p27, and proliferation retardation. Collectively, our findings indicate the important role of SF3B4 in the regulation of A549 cell proliferation through the UBE4B/p53/p21 axis and p27, implicating the therapeutic strategies for NSCLC targeting SF3B4 and UBE4B.

A Study of the Relationship Analysis of Power Conversion and Changed Capacitance in the Depletion Region of Silicon Solar Cell

  • Kim, Do-Kyeong;Oh, Yeong-Jun;Kim, Sang-Hyun;Hong, Kyeong-Jin;Jung, Haeng-Yeon;Kim, Hoy-Jin;Jeon, Myeong-Seok
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.4
    • /
    • pp.177-181
    • /
    • 2013
  • In this paper, silicon solar cells are analyzed regarding power conversion efficiency by changed capacitance in the depletion region. For the capacitance control in the depletion region of silicon solar cell was applied for 10, 20, 40, 80, 160 and 320 Hz frequency band character and alternating current(AC) voltage with square wave of 0.2~1.4 V. Academically, symmetry formation of positive and negative change of the p-n junction is similar to the physical effect of capacitance. According to the experiment result, because input of square wave with alternating current(AC) voltage could be observed to changed capacitance effect by indirectly method through non-linear power conversion (Voltage-Current) output. In addition, when input alternating current(AC) voltage in the silicon solar cell, changed capacitance of depletion region with the forward bias condition and reverse bias condition gave a direct effect to the charge mobility.

Fabrication of a depletion mode p-channel GaAs MOSFET using $Al_2O_3$ gate insulator ($Al_2O_3$ 게이트 절연막을 이용한 공핍형 p-채널 GaAs MOSFET의 제조)

  • Jun, Bon-Keun;Lee, Tae-Hyun;Lee, Jung-Hee;Lee, Yong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.5
    • /
    • pp.421-426
    • /
    • 1999
  • In this paper, we present p-channel GaAs MOSFET having $Al_2O_3$ as gate insulator fabricated on a semi-insulating GaAs substrate, which can be operated in the depletion mode. $1\;{\mu}m$ thick undoped GaAs buffer layer, $4000\;{\AA}$ thick p-type GaAs epi-layer, undoped $500{\AA}$ thick AlAs layer, and $50\;{\AA}$ thick GaAs cap layer were subsequently grown by molecular beam epitaxy(MBE) on (100) oriented semi-insulating GaAs substrate and this wafer was oxidized. AlAs layer was fully oxidized as a $Al_2O_3$ thin film. The I-V, $g_m$, breakdown charateristics of the fabricated GaAs MOSFET showed that wet thermal oxidation of AlAs/GaAs epilayer/S I GaAs was successful in realizing depletion mode p-channel GaAs MOSFET.

  • PDF

Current Voltage Characteristic of ZTO Thin Film by Negative Resistance (ZTO 박막의 부성저항에 의한 전류전압특성)

  • Oh, Teresa
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.2
    • /
    • pp.29-31
    • /
    • 2019
  • The ZTO/p-Si thin film was produced and investigated for tunneling phenomena caused by the interface characteristics of the depletion layer. ZTO thin film was deposited and heat treated to produce barrier potentials by the depletion layer. The negative resistance characteristics were shown in the thin film of ZTO heat treated at $100^{\circ}C$, and the insulation properties were the best. Current decreased in the negative voltage direction by nonlinear show key characteristics, and current decreased in tunneling phenomenon by negative resistance in the positive voltage direction. Heat treated at $100^{\circ}C$, the ZTO thin film has increased barrier potential in the areas of the depletion layer and therefore the current has increased rapidly. The current has decreased again as we go beyond the depletion layer. Therefore, tunneling can be seen to make insulation better. In the ZTO thin film heat treated at $70^{\circ}C$ without tunneling, leakage current occurred as current increased at positive voltage. Therefore, tunneling effects by negative resistance were found to enhance insulation properties electrically.