The Effect of Drought Simulated by Discharge Control on Water Quality and Benthic Diatom Community in the Indoor Experimental Channel

인공하천에서 유량감소로 모사한 가뭄효과가 수질 및 부착돌말류 군집에 미치는 영향

  • Park, Hye-Jin (Department of Environmental Science, Konkuk University) ;
  • Kim, Baik-Ho (Department of Environmental Science, Konkuk University) ;
  • Kong, Dong-Soo (Department of Biological Science, Kyonggi University) ;
  • Hwang, Soon-Jin (Department of Environmental Science, Konkuk University)
  • Received : 2012.03.08
  • Accepted : 2012.03.24
  • Published : 2012.03.31

Abstract

We investigated an ecological impact of drought simulated by discharge depletion on the water quality and benthic diatom community in the indoor experimental channel. As artificial substrates slide-glass was installed in acrylic channel for 16 days. Channels were supplied continuously with eutrophic lake water with a discharge rate of 6 L $min^{-1}$ in duplication during the colonized period. And then during the discharge depletion period, three discharge rates were provided: NDF (No depletion of flow rate (Control): 6 L $min^{-1}$), LDF (Low depletion of flow rate: 3 L $min^{-1}$) and HDF (High depletion of flow rate: 1 L $min^{-1}$). Environmental factors in the water, such as suspended solid, Chl-$a$ and nutrients concentration, were measured with periphytic algae including AFDM (ash free dry matter), Chl-$a$ concentration and cell density at 1-day intervals. Light intensity increased significantly with discharge depletion (F=229.5, p= 0.000). $NH_4$-N concentration was highest at HDF. Suspended solid in outflowing water decreased at HDF (88%), LDF (97%) and NDF (99%), compared to inflowing water (100 %). Chl-$a$ in substrates increased more than two times at LDF and HDF than NDF (F= 8.399, p=0.001). Also AFDM and benthic diatom density increased significantly at LDF and HDF than NDF (F=9.390, p=0.001; F=6.088, p=0.007). In all experimental groups, $Aulacoseira$ $ambigua$, $Achnanthes$ $minutissima$ and $Aulacoseira$ $granulata$ were dominant species accounting for greater than 10% of benthic diatom density. The most dominant species, $A.$ $ambigua$ was highest at LDF, followed by HDF and NDF (F=8.551, p=0.001). In conclusion, the effect of drought simulated by discharge depletion in an artificial stream ecosystem caused significant changes on water quality and benthic diatom biomass. This result provides a useful data to understand the effect of draught on stream ecosystem in situ.

본 연구는 하천에서 가뭄으로 인해 나타나는 갈수현상을 단기간의 유량의 감소로 모사하여 수질 및 부착돌말류 군집에 미치는 생태학적 영향을 인공수로에서 분석하였다. 아크릴로 제작한 실내 인공수로에 부착돌말 인공기질로는 슬라이드글라스를 설치하고, 부영양 저수지의 표층수를 유입시켜 실험수로 이용하였다. 실험기간 중 부착돌말 군체형성기 동안 모든 실험군의 유량은 6 L $min^{-1}$, 이후 유량감소기 동안 각 실험군의 유량은 NDF(No depletion of flow rate (Control): 6 L $min^{-1}$), LDF (Low depletion of flow rate: 3 L $min^{-1}$), 그리고 HDF (High depletion of flow rate: 1 L $min^{-1}$)로 설정하였다. 유량감소의 영향을 비교하기 위하여 16일간의 실험기간 동안 유입수와 배출수의 수온, 전기전도도, 용존산소, pH, 탁도, 부유물질, 영양염 및 Chl-$a$ 농도를 분석하였으며, 또한 부착기질의 Chl-$a$와 AFDM(ash free dry matter), 그리고 부착돌말류의 조성과 세포밀도를 1일 간격으로 분석하였다. 광도는 처리 유량이 적어질수록 유의하게 증가했다(F=229.5, p=0.000). $NH_4$-N는 NDF보다 HDF에서 현저하게 높은 농도를 유지하였다. 유입수의 SS 농도(100%) 대비 배출수의 SS 농도는 HDF에서 88%로 감소하였으며 LDF (97%)와 NDF (99%)에 비하여 높은 감소율을 보였다. 기질의 Chl-$a$는 NDF에 비하여 유량감소 처리군에서 약 2배 이상 유의하게 증가하였다(F=8.399, p=0.001). 또한 기질의 AFDM과 부착돌말류 총밀도는 NDF에 비하여 두 처리군에서 유의하게 증가하였다(F=9.390, p=0.001; F=6.088, p=0.007). 실험기간 동안 대조군과 처리군 모두에서 $Aulacoseira$ $ambigua$, $Achnanthes$ $minutissima$, $Aulacoseira$ $granulata$ 등 총 3종의 부착규조류가 총 밀도의 10% 이상을 보인 우점종으로 나타났고, 제1 우점종인 $A.$ $ambigua$는 LDF에서 가장 높은 밀도를 보였으며 HDF, NDF순으로 생물량이 낮았다(F=8.551, p=0.001). 본 연구 결과, 인공 하천생태계에서 가뭄(갈수) 효과는 수질과 부착돌말류 현존량에 유의한 변화를 야기하였으며, 특히 부착돌말류 현존량이 유의하게 증가하였다. 이는 실제 하천에서 가뭄에 의한 생태계의 변화를 이해하는데 유용한 기초자료를 제공할 것으로 사료된다.

Keywords

References

  1. Allan, J.D. 1995. Stream Ecology: Structure and Function of Running Waters. Chapman and Hall, Netherlands. pp. 388.
  2. APHA. 2001. Standard Methods for the Examination of Water and Wastewater. 20th ed. American Public Health Association. Washington, D. C. USA.
  3. Besemer, K., G. Singer, R. Limberger, A.K. Chlup, G. Hochedlinger, H. Iris, C. Baranyi and T.J. Battin. 2007. Biophysial controls on community succession in stream biofilms. Applied and Environmental Microbiology 73:4966-4974. https://doi.org/10.1128/AEM.00588-07
  4. Biggs, B.J.F. and H.A. Thomsen. 1995. Disturbance of stream periphyton by perturbations in shear stress: time to structural failure and differences in community resistance. Journal of Phycology 31: 233-241. https://doi.org/10.1111/j.0022-3646.1995.00233.x
  5. Biggs, B.J.F., R.J. Stevenson and R.L. Lowe. 1998. A habitat matrix conceptual model for stream periphyton. Archiv fur Hydrobiologie 143: 21-56.
  6. Biggs, B.J.F. 2000. New Zealand periphyton guidelines: detecting, monitoring and managing the enrichment of streams, vol A. Background and guidelines. Ministry for the Environment, Wellington. 151 pp.
  7. Boulton, A.J. 2003. Parallels and contrasts in the effects of drought on stream macroinvertebrate assemblages. Freshwater Biology 48: 1173-1185. https://doi.org/10.1046/j.1365-2427.2003.01084.x
  8. Dahm, C.N., M.A. Baker, D.I. Moore and J.R. Thibault. 2003. Coupled biogeochemical and hydrological responses of streams and rivers to drought. Freshwater Biology 48: 1219-1231. https://doi.org/10.1046/j.1365-2427.2003.01082.x
  9. Death, R.G. and E.M. Zimmermann. 2005. Interaction between disturbance and primary productivity in determining stream invertebrate diversity. Oikos 111: 392-402. https://doi.org/10.1111/j.0030-1299.2005.13799.x
  10. Dewson, Z.S., A.B.W. James and R.G. Death. 2007. Invertebrate responses to short-term water abstraction in small New Zealand streams. Freshwater Biology 52: 357-369. https://doi.org/10.1111/j.1365-2427.2006.01682.x
  11. Ghosh, M. and J.P. Gaur. 1998. Current velocity and the establishment of stream algal periphyton communities. Aquatic Botany 60: 1-10. https://doi.org/10.1016/S0304-3770(97)00073-9
  12. Gibson, C.A., J.L. Meryer, N.L. Poff, L.E. Hay and A. Georgakakos. 2005. Flow regime alterations under changing climate in two river basins: implications for freshwater ecosystems. River Research and Applications 21: 849-864. https://doi.org/10.1002/rra.855
  13. Hellawell, J.M. 1986. Biological indicators of freshwater pollution and Environmental management. Elsevier applied science publishers, London. pp. 546.
  14. Hillebrand, H. and U. Sommer. 2000. Diversity of benthic microalgae in response to colonization time and eutrophication. Aquatic Botany 67: 221-236. https://doi.org/10.1016/S0304-3770(00)00088-7
  15. Hwang, S.J., N.Y. Kim, S.A. Yoon, B.H. Kim, M.H. Park, K.A. You, H.Y. Lee, H.S. Kim, Y.J. Kim, J.H. Lee, O.M. Lee, J.K. Shin, E.J. Lee, S.L. Jeon and H.S. Joo. 2011. Distribution of benthic diatoms in Korean rivers and streams in relation to environmental variables. Annales De Limnologie 47: 15-33.
  16. Jensen, M.H., E. Lomstein and J. Sorensen. 1990. Benthic $NH_4^+$ and $NO_3^-$ flux following sedimentation of a spring phytoplankton bloom in Aarhus Bight, Denmark. Marine Ecology Progress Series 61: 87-96.
  17. Joh, G.J. and S.J. Kim. 2008. Trend of the water quality and algal blooms during the dry season in the Nakdong river. Proceedings of Korean Water Congress. P-98.
  18. Kim, B.H., H.J. Park, H.N. Min, D.S. Kong and S.J. Hwang. 2011. Short-term effects of turbid water and flow rate on the benthic diatom community in an artificial channel. Journal of Korean Society on Water Quality 27: 855-861.
  19. Kim, H.S., S.J. Hwang and J.M. Ko. 2003. Evaluation of water quality variation and sediment of a shallow artificial lake (lake ligam) in located the metropolitan area. Korean Journal of Limnology 36: 161-171.
  20. Kim, S.M., H.R. Noh, S.H. Kim, S.H. Kim, H.K. Park and D.S. Kong. 2009. Characterization of water quality for the low water season in Paldang Lake. Proceedings of Korean Water Congress. P-79.
  21. Krammer, K. and H. Lange-Bertalot. 1986. Bacillariophyceae 1. Teil: Naviculaceae. In: Susswasserflora von Mittleuropa, Band 2/1. (Ettl, H., J. Gerloff, H. Heying and D. Mollenhauer, eds.). Gustav Fischer Verlag. Stuttgart.
  22. Krammer, K. and H. Lange-Bertalot. 1988. Bacillariophyceae 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In: Susswasserflora von Mittleuropa, Band 2/2. (Ettl, H., J. Gerloff, H. Heying and D. Mollenhauer, eds.). Gustav Fischer Verlag. Stuttgart.
  23. Krammer, K. and H. Lange-Bertalot. 1991a. Bacillariophyceae 3. Teil: Cenrales, Fragilariaceae, Eunotiaceae. In: Susswasserflora von Mittleuropa, Band 2/3. (Ettl, H., J. Gerloff, H. Heying and D. Mollenhauer, eds.). Gustav Fischer Verlag. Stuttgart.
  24. Krammer, K. and H. Lange-Bertalot. 1991b. Bacillariophy-ceae 4. Teil: Achnanthaceae Kritische Eraganzungen zu Navicula (Lineolatae) und Gomphonema. In: Susswasserflora von Mittleuropa, Band 2/4. (Ettl, H., J. Gerloff, H. Heying and D. Mollenhauer, eds.). Gustav Fischer Verlag. Stuttgart.
  25. Ledger, M.E. and A.G. Hildrew. 2001. Recolonization by the benthos of an acid stream following a drought. Archiv fur Hydrobiologie 152: 1-17.
  26. Ledger, M.E., R.M.L. Harris, P.D. Armitage and A.M. Milner. 2008. Disturbance frequency influences patch dynamics in stream benthic algal communities. Oecologia 155: 809-819. https://doi.org/10.1007/s00442-007-0950-5
  27. Lee, H.J., D.S. Kong, S.H. Kim, K.S. Shin, J.H. Park, B.I. Kim, S.M. Kim, S.H. Jang and S.U. Cheon. 2007. Investigation on water quality variation characteristics during dry season in Namhan river drainage basin. Journal of Korean Society on Water Quality 23: 889-896.
  28. Lehner, B., P. Döll, J. Alcamo, T. Henrichs and F. Kaspar. 2006. Estimating the impact of global change on flood and drought risks in Europe: a continental, integrated analysis. Climatic Change 75: 273-299. https://doi.org/10.1007/s10584-006-6338-4
  29. Lytle, D.A. and N.L. Poff. 2004. Adaptation to natural flow regimes. Trends in Ecology and Evolution 19: 94-100. https://doi.org/10.1016/j.tree.2003.10.002
  30. Minshall, G.W. and R.C. Peterson. 1985. Towards a theory of macroinvertebrate community structure in stream ecosystems. Archiv fur Hydrobiologie 104: 49-76.
  31. MOE/NIER. 2011. Survey and Evaluation of Aquatic Eosystem Health in Korea, The Ministry of Environment/National Institute of Environmental Researh, Korea (in Korean).
  32. National Institute of Meteorological Research Korea meteorological administration. 2009. Understanding of climate change 2-climate change of the Korea Peninsula: the present and future.
  33. National Research Council. 1999. The impacts of natural disasters: a framework for loss estimation. National Academy Press. Washington, DC. 80 pp.
  34. Patrick, R. and C.W. Reimer. 1966. The diatoms of the United States, exclusive of Alaska and Hawaii. Vol. 1: Fragilariaceae, Eunotiaceae, Achnanthaceae, Naviculaceae. Academy of natural sciences of Philadelphia, Philadelphia.
  35. Peterson, C.G. 1996. Response of benthic algal communities to natural physical disturbance. In: Stevenson RJ, Bothwell ML, Lowe RL (eds) Algal ecology: freshwater benthic ecosystems. Academic Press, San Diego, pp. 375-402.
  36. Peterson, C.G., A.C. Weibel, N.B. Grimm and S.G. Fisher. 1994. Mechanisms of benthic algal recovery following spates: comparison of simulated and natural events. Oecologia 98: 280-290. https://doi.org/10.1007/BF00324216
  37. Perterson, C.G., H.M. Valett and C.N. Dahm. 2001. Shifts in habitat templates for lotic microalgae linked to interannual variation in snowmelt intensity. Limnology and Oceanography 46: 858-870. https://doi.org/10.4319/lo.2001.46.4.0858
  38. Petraitis, P.S., R.E. Latham and R.A. Niesenbaum. 1989. The maintenance of species diversity by disturbance. Quarterly Review of Biology 64: 393-418. https://doi.org/10.1086/416457
  39. Sabater, S., S.V. Gregory and J.R. Sedell. 1998. Community dynamics and metabolism of benthic algae colonizing wood and rock substrata in forest stream. Journal of Phycology 34: 561-567. https://doi.org/10.1046/j.1529-8817.1998.340561.x
  40. Schindler, D.W., F.A.J. Armstrong, S.K. Holmgren and G.J. Brunskill. 1971. Eutrophication of lake 227, experimental lakes area, northwestern Ontario, by addition of phosphate and nitrate. Journal of the Fisheries Research Board of Canada 28: 1763-1782. https://doi.org/10.1139/f71-261
  41. Showers, W.J., D.M. Eisenstein, H.W. Paerl and J. Rudek. 1990. Stable isotope tracers of nitrogen sources to the Neuse River, North Carolina. Water Resources Research Institute Report. No. 253, Univ. of North Carolina, Releigh.
  42. Sousa, W.P. 1980. The responses of a community to disturbance: the importance of successional age and species life histories. Oecologia 45: 72-81. https://doi.org/10.1007/BF00346709
  43. Stevenson, R. 1997. Scale-dependent causal frameworks and the consequences of benthic algal heterogeneity. Journal of the North American Benthological Society 16: 248-262. https://doi.org/10.2307/1468255
  44. Vázquez, E., A.M. Romani, F. Sabater and A. Butturini. 2007. Effects of the dry-wet hydrological shift on dissolved organic carbon dynamics and fate across streamriparian interface in a Mediterranean catchment. Ecosystems 10: 239-251.
  45. Villeneuve, A., B. Montuelle and A. Bouchez, 2010. Influence of slight differences in environmental conditions (light, hydrodynamics) on the structure and function of periphyton. Aquatic Sciences 72: 33-44. https://doi.org/10.1007/s00027-009-0108-0
  46. Ylla, I., I. Sanpera-Calbet, E. Vazques, A.M. Romani, I. Munoz, A. Butturini and S. Sabater. 2010. Organic matter availability during pre- and post-drought periods in a Mediterranean stream. Hydrobiologia 657: 217-232. https://doi.org/10.1007/s10750-010-0193-z
  47. Yoon, M.H., J.T. Hyun, N.S. Huh, S.H. Kwon and D.C. Cho. 2007. A study on release characteristics of lake sediments under oxic and anoxic conditions. Journal of The Korean Society of Environmental Engineers 29: 1003-1012.