• Title/Summary/Keyword: P&S-wave velocity

Search Result 185, Processing Time 0.03 seconds

Structure and physical properties of Earth Crust material in the Middle of Korean Peninsula(2) : Comparison between elastic Velocity and point-load of core specimen of sedimentary rocks. (한반도 중부권 지각물질의 구조와 물성연구(2) : 퇴적암류 코아시료의 탄성파 속도와 점재하 강도 비교)

  • 송무영;황인선
    • The Journal of Engineering Geology
    • /
    • v.3 no.1
    • /
    • pp.21-37
    • /
    • 1993
  • In order to investigate the correlation of sedimentary rock properties. specific gravity, porosity, water content, sonic wave velodty, and point4oad strength index of core samples of limestones, sandstones and shales were measured. The relationships between density and velocity show $V_p=16300d-38719.3,{\;}V_s1896.4d-29225.1$ of regression equation for sandstones and $Vp=4085d-10264.8,{\;}V_s=3519d-7841.3$ for shales and <$Vp=4085d^2-20747d+303,{\;}V_s=3899d^2-21442d+318$ for limestones. Seismic wave velocity of shales which have high density is lower than that of sandstones, and this seems to be an effect of bedding in shale. P-wave velocity and S-wave velocity of limestones, sandstones and shales show the linear relationships as a whole. The regression equations are respectively calculated V_s=0.26V_p+1041.6m/sec,{\;}V_s=0.43V_p+424.2m/sec,{\;}and{\;}Vs=0.51V_p+261.9m/sec$ and the correlation coefficients of the velocity show r= 0.86 in sandstones, r= 0.75 in limestones and r=0.86 in shales. According to the point4oad strength test for limestones, point4ord strength anisotropy was not so dear even though the specimens show generally the banded structure. Variations of dip angle of bedding whihin the range $30^{\circ}-60^{\circ}$ does not have much influence upon the diametral strength index and axial strength index. From the result of point load test, P-wave velocity increases with point4ord strength index but the regression equations are $V_p=98.5lI{s_d}+4082.1m/sec,{\;}V_p=106.41{s_a}+3954m/sec$ and their correlation coefficient is low.

  • PDF

A Study on the Dynamic Characteristics of on-shore Ground Using Suspension P. S. Logging (서스펜션 P.S. 검층을 이용한 해저 지반의 동역학적 특성에 관한 연구)

  • 김용수;정승용;장찬수;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.357-364
    • /
    • 1999
  • In recently site investigations, the need for the determination of dynamic soil properties such as dynamic modules of rigidity, elasticity, dynamic poison's ratio and damping ratio etc. is increasing for the astigmatic designs of the civil structures. To obtain some of the dynamic properties, measurement of elastic waves velocity, both P and S wave, is required. Among various methods to measure elastic wave velocity such and Down Hole, Cross Hole and Refraction etc., Suspension P.S. Logging has an advantage to use for the off-shore investigation where generation of the shock wave and traveling of the wave is difficult. In suspension P.S. logging, specially designed prove equipped with source of shock wave, two 3-channel receivers, departing 1m distance, and other auxiliary facilities is inserted down in a bore hole bottom and raised in predetermined interval, usually 1m or 2m, and measurement is conducted. P.S. logging have been conducted in a off-shore construction project near InChon in the west coast for the first in the country, and form the result, potential of the liquefaction of the subsoil was evaluated and compared with the conventional method.

  • PDF

Comparison of improvement on Low back pain depending on male inpatient's Pulse wave velocity (남성 입원환자들의 맥파속도에 따른 요통 호전도의 비교 연구)

  • Lee, Jin-Hyuk;Sui, Mu-Chang;Min, Kwan-Sik;Lee, Han;Jeong, Ho-Seok
    • The Journal of Churna Manual Medicine for Spine and Nerves
    • /
    • v.4 no.2
    • /
    • pp.39-45
    • /
    • 2009
  • Objectives : The aim of this study is to compare the improvement of Low back pain (LBP) depending on male Inpatient's Brachlalankle Pulse Wave Velocity (baPWV), Method : We evaluated 35 LBP inpatients who took pulse wave velocity test during admission at Jaseng hospital from November 2008 to september 2009. We used applanation tonometry method to measure pulse wave velocity and numerical rating scale to measure patient's improvement. Result : At admission, standard deviation of normal group's NRS was $7.44{\pm}1.67$ and high risk group's was $7.57{\pm}2.09$(P=0.678). After 5 days of admission, standard deviation of normal group's NRS was $5.67{\pm}1.94$ and high risk group's was $6.00{\pm}2.17$(P=0.680). After 10 days of admission, standard deviation of normal group's NRS was $4.00{\pm}1.80$ and high risk group's was $4.95{\pm}1.96$(P=0.281). After 15 days of admission, standard deviation of normal group's NRS was $2.89{\pm}1.62$ and high risk group's was $4.10{\pm}1.92$(P=0.124). At discharge, standard deviation of normal group's NRS was $5.11{\pm}1.69$ and high risk group's was $4.86{\pm}2.08$(P=0.504). Comparison between admission and discharge, standard deviation of normal group's NRS was $5.11{\pm}1.69$ and high risk group's was $4.86{\pm}2.08$(P=0.504) Conclusion : Low back patients with high Brachialankle Pulse Wave Velocity, showed slower improvement rate compare to patients within normal rate. But statically, had no significance.

  • PDF

Comparison of Shear-wave Velocity Sections from Inverting SH-wave Traveltimes of First Arrivals and Surface Wave Dispersion Curves (SH파 초동주시 역산과 표면파 분산곡선 역산으로부터 구한 횡파속도 단면 비교)

  • Lee, Chang-Min;Kim, Ki-Young
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.2
    • /
    • pp.67-74
    • /
    • 2005
  • Two-dimensional S-wave velocity sections from SH-wave refraction tomography and surface wave dispersions were obtained by inverting traveltimes of first arrivals and surface wave dispersions, respectively. For the purpose of comparison, a P-wave velocity tomogram was also obtained from a P-wave refraction profiling. P and Rayleigh waves generated by vertical blows on a plate with a sledgehammer were received by 100- and 4.5-Hz geophones, respectively. SH-waves generated by horizontal blows on both sides of a 50 kg timber were received by 8 Hz horizontal geophones. The shear-wave signals were enhanced subtracting data of left-side blows from ones of the right-side blows. Shear-wave velocities from tomography inversion of first-arrival times were compared with ones from inverting dispersion curves of Rayleigh waves. Although the two velocity sections look similar to each other in general, the one from the surface waves tends to have lower velocities. First arrival picking of SH waves is troublesome since P and PS-converted waves arrive earlier than SH waves. Application of the surface wave method, on the other hand, is limited where lateral variation of subsurface tructures is not mild.

  • PDF

The S-wave Velocity Structure of Shallow Subsurface Obtained by Continuous Wavelet Transform of Short Period Rayleigh Waves (Continuous Wavelet Transform을 단주기 레일리파에 적용하여 구한 천부지반 S파 속도구조)

  • Jung, Hee-Ok;Lee, Bo-Ra
    • Journal of the Korean earth science society
    • /
    • v.28 no.7
    • /
    • pp.903-913
    • /
    • 2007
  • In this study, the researchers compared the S-wave velocity structures obtained by two kinds of dispersion curves: phase and group dispersions from a tidal flat located in the SW coast of the Korean peninsula. The ${\tau}-p$ stacking method was used for the phase velocity and two different methods (multiple filtering technique: MFT and continuous wavelet transform: CWT) for the phase velocity. It was difficult to separate higher modes from the fundamental mode phase velocities using the ${\tau}-p$ method, whereas the separation of different modes of group velocity were easily achieved by both MFT and CWT. Of the two methods, CWT was found to be more efficient than MFT. The spatial resolutions for the inversion results of the fundamental mode for both phase and group velocities were good for only a very shallow depth of ${\sim}1.5m$. On the other hand, the spatial resolutions were good up to ${\sim}4m$ when both the fundamental and the 1st higher mode poop velocities obtained by CWT were used for S-wave inversion. This implies that the 1st higher mode Rayleigh waves contain more information on the S-wave velocity in deeper subsurface. The researchers applied the CWT method to obtain the fundamental and the 1st higher mode poop velocities of the S-wave velocity structure of a tidal flat located in SW coast of the Korean peninsula. Thea the S-wave velocity structures were compared with the borehole description of the study area.

Evaluating Shear Wave Velocity of Rock Specimen Through Compressional Wave Velocities Obtained from FFRC and Ultrasonic Velocity Methods (양단자유공진주 및 초음파속도법으로 획득한 압축파 속도를 이용한 암석시편의 전단파 속도 도출)

  • Bang, Eun Seok;Park, Sam Gyu;Kim, Dong Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.4
    • /
    • pp.250-256
    • /
    • 2013
  • Using shear wave velocity is more reasonable to estimate strength and integrity of rock compared with using compressional wave. It is often ambiguous to pick the dominant frequency caused by torsional wave when evaluating $V_S$ of rock specimen from FFRC method. It is also sometimes ambiguous to pick the first arrival point of S wave compared with P wave in the signals acquired from ultrasonic velocity method. Otherwise, the procedure of evaluating $V_P$ using ultrasonic velocity method and $V_L$ using FFRC method is relatively stable. Through the relationship between elastic modulus, poisson's ratio and $V_S$ can be obtained from $V_P$, $V_L$. Applicability was checked using model specimens having different material property and length and rock specimens sampled in mine area, and usefulness of proposed procedure was verified.

Influence of Moisture Content on Longitudinal Wave Velocity in Concrete (수분 함유량이 콘크리트의 종파 속도에 미치는 영향에 관한 연구)

  • Lee, H.K.;Lee, K.M.;Kim, J.S.;Kim, D.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.4
    • /
    • pp.259-269
    • /
    • 1999
  • Elastic wave velocity measurement technique such as impact-echo method and ultrasonic pulse velocity method has been successfully used to evaluate the moduli and strength of concrete. However, estimation results obtained by the NDT methods do not agree well with real things because longitudinal wave velocity is influenced by various factors. In this paper, among several factors influencing P-wave velocity, the influence of moisture content in concrete was investigated through the experiment. Test results show that longitudinal wave velocity is significantly affected by the moisture content of concrete, i.e., the lower moisture content. the lower velocity. Moisture content influences rod-wave velocity measured by impact-echo method stronger than ultrasonic pulse velocity measured by transmission method. During drying process with ages. the difference of increasing rate between longitudinal wave velocity and compressive strength of concrete is gradually increased. Therefore, to establish more accurate relationship between longitudinal wave velocity and strength, the difference of the increasing rate should be considered.

  • PDF

S-wave Velocity Derivation Near the BSR Depth of the Gas-hydrate Prospect Area Using Marine Multi-component Seismic Data (해양 다성분 탄성파 자료를 이용한 가스하이드레이트 유망지역의 BSR 상하부 S파 속도 도출)

  • Kim, Byoung-Yeop;Byun, Joong-Moo
    • Economic and Environmental Geology
    • /
    • v.44 no.3
    • /
    • pp.229-238
    • /
    • 2011
  • S-wave, which provides lithology and pore fluid information, plays a key role in estimating gas-hydrate saturation. In general, P- and S-wave velocities increase in the presence of gas-hydrate and the P-wave velocity decreases in the presence of free gas under the gas-hydrate layer. Whereas there are very small changes, even slightly increases, in the S-wave velocity in the free gas layer because S-wave is not affected by the pore fluid when propagating in the free gas layer. To verify those velocity properties of the BSR (bottom-simulating reflector) depth in the gas-hydrate prospect area in the Ulleung Basin, P- and S-wave velocity profiles were derived from multi-component ocean-bottom seismic data which were acquired by Korea Institute of Geoscience and Mineral Resources (KIGAM) in May 2009. OBS (ocean-bottom seismometer) hydrophone component data were modeled and inverted first through the traveltime inversion method to derive P-wave velocity and depth model of survey area. 2-D multichannel stacked data were incorporated as an initial model. Two horizontal geophone component data, then, were polarization filtered and rotated to make radial component section. Traveltimes of main S-wave events were picked and used for forward modeling incorporating Poisson's ratio. This modeling provides S-wave profiles and Poisson's ratio profiles at every OBS site. The results shows that P-wave velocities in most OBS sites decrease beneath the BSR, whereas S-wave velocities slightly increase. Consequently, Poisson's ratio decreased strongly beneath the BSR indicating the presence of a free gas layer under the BSR.

Seismic Velocity Change Due to Micro-crack Accumulation of Rock Samples from Seokmo Island, Korea (손상 진행에 따른 석모도 암석 시험편의 탄성파속도 변화)

  • Lee, Sang-Kyu;Choi, Ji-Hyang;Cheon, Dae-Sung;Lee, Tae-Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.4
    • /
    • pp.324-334
    • /
    • 2011
  • Seismic wave velocity change has been monitored due to the accumulation of micro-cracks by uniaxial loads on the rock samples from Seokmo Island with stepwise increase in 5 stages. After the load was applied up to 95% of UCS, P- and S-wave velocities varied in ranges of 0.9 ~ 18.3% and 2.8 ~ 14.8% of fresh rock sample velocities, respectively. Unlike seismic velocity of the dry rock samples that showed overall decreases after the loading, velocity changes of saturated rock samples were much more complicated. These seemed to be due to the mixture of two contradictory mechanisms; i.e. accumulation of micro-crack causes an increase in porosity and a decrease in wave velocity, while saturation causes an increase in wave velocity. Most of tested rocks showed a trend of velocity increase with low axial load and then velocity decrease at later stages. Starting stage of velocity decrease differs from samples to samples. After the failure of rock occurred, noticeable increases of porosity and decreases of wave velocity have been observed. It showed overall trend that the more the quartz contents and the lower the silicate, the higher the Young's modulus.