• Title/Summary/Keyword: Oxynitride

Search Result 135, Processing Time 0.029 seconds

Efficiency enhancement of Organic Light Emitting Diodes by the AlON interfacial Layer (산소질화알루미늄 계면층에 의한 유기발광 소자의 효율 향상)

  • Park, Hyung-Jun;Hai, Jin Zheng;Nam, Eun-Kyoung;Jung, Dong-Geun;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.388-389
    • /
    • 2007
  • In this work, Organic Light Emitting Diodes using Aluminum-Oxynitride as a hole-injecting interfacial have been fabricated. This interfacial layer is inserted at the ITO/N,NV-diphenyl-N, NV-bis(3-methylphenyl)-1,1V-diphenyl-4,4V-diamine (TPD) interface. The brightness and efficiency of the device with the AION film is higher than that of the device without it. The enhancements are attributed to an improved balance of hole and electron injections due to the energy level realignment and the change in carrier tunneling probability by the interfacial layer.

  • PDF

Fabrication and Electrochemical Characterization of All Solid State Thin Film Micro-Battery by in-situ sputtering (In-situ 스퍼터링을 이용한 마이크로 박막 전지의 제작 및 전지 특성 평가)

  • 전은정;신영화;남상철;조원일;손봉희;윤영수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.159-162
    • /
    • 1999
  • All solid state thin film micro-batteries consisting of lithium metal anode, an amorphous LiPON electrolyte and cathode of vanadium oxide have been fabricated and characterized, which were fabricated with cell structure of Li/LiPON/V$_2$O$\sub$5/Pt. The vanadium oxide thin films were formed by d.c. reactive sputtering on Pt current collector. After deposition of vanadium oxide films, in-situ growths of lithium phosphorus oxynitride film were conducted by r.f. sputtering of Li$_3$PO$_4$ target in mixture gas of N$_2$ and O$_2$. The pure metal lithium film was deposited by thermal evaporation on thin film LiPON electrolyte. The cell capacity was about 45${\mu}$Ah/$\textrm{cm}^2$ $\mu\textrm{m}$ after 200 cycle. No appreciable degradation of the cell capacity could be observed after 50 cycles .

  • PDF

Effect of Laser Ablation on Rear Passivation Stack for N-type Bifacial Solar Cell Application (N형 양면 수광 태양전지를 위한 레이저 공정의 후면 패시베이션 적층 구조 영향성)

  • Kim, Kiryun;Chang, Hyo Sik
    • Korean Journal of Materials Research
    • /
    • v.30 no.5
    • /
    • pp.262-266
    • /
    • 2020
  • In this paper, we investigated the effect of the passivation stack with Al2O3, hydrogenated silicon nitride (SiNx:H) stack and Al2O3, silicon oxynitride (SiONx) stack in the n type bifacial solar cell on monocrystalline silicon. SiNx:H and SiONx films were deposited by plasma enhanced chemical vapor deposition on the Al2O3 thin film deposited by thermal atomic layer deposition. We focus on passivation properties of the two stack structure after laser ablation process in order to improve bifaciality of the cell. Our results showed SiNx:H with Al2O3 stack is 10 mV higher in implied open circuit voltage and 60 ㎲ higher in minority carrier lifetime than SiONx with Al2O3 stack at Ni silicide formation temperature for 1.8% open area ratio. This can be explained by hydrogen passivation at the Al2O3/Si interface and Al2O3 layer of laser damaged area during annealing.

Electrical characteristics of poly-Si NVM by using the MIC as the active layer

  • Cho, Jae-Hyun;Nguyen, Thanh Nga;Jung, Sung-Wook;Yi, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.151-151
    • /
    • 2010
  • In this paper, the electrically properties of nonvolatile memory (NVM) using multi-stacks gate insulators of oxide-nitride-oxynitride (ONOn) and active layer of the low temperature polycrystalline silicon (LTPS) were investigated. From hydrogenated amorphous silicon (a-Si:H), the LTPS thin films with high crystalline fraction of 96% and low surface's roughness of 1.28 nm were fabricated by the metal induced crystallization (MIC) with annealing conditions of $650^{\circ}C$ for 5 hours on glass substrates. The LTPS thin film transistor (TFT) or the NVM obtains a field effect mobility of ($\mu_{FE}$) $10\;cm^2/V{\cdot}s$, threshold voltage ($V_{TH}$) of -3.5V. The results demonstrated that the NVM has a memory window of 1.6 V with a programming and erasing (P/E) voltage of -14 V and 14 V in 1 ms. Moreover, retention properties of the memory was determined exceed 80% after 10 years. Therefore, the LTPS fabricated by the MIC became a potential material for NVM application which employed for the system integration of the panel display.

  • PDF

A Comparative Study on Characteristics of Cutting Tool Materials Based on SiAlON Ceramics (SiAlON계 절삭공구 소재의 특성 비교)

  • Kim, Seongwon;Choi, Jae-Hyung
    • Journal of Powder Materials
    • /
    • v.28 no.6
    • /
    • pp.502-508
    • /
    • 2021
  • SiAlON-based ceramics are a type of oxynitride ceramics, which can be used as cutting tools for heat-resistant super alloys (HRSAs). These ceramics are derived from Si3N4 ceramics. SiAlON can be densified using gas-pressure reactive sintering from mixtures of oxides and nitrides. In this study, we prepare an α-/β-SiAlON ceramic composite with a composition of Yb0.03Y0.10Si10.6Al1.4O1.0N15.0. The structure and mechanical/thermal properties of the densified SiAlON specimen are characterized and compared with those of a commercial SiAlON cutting tool. By observing the crystallographic structures and microstructures, the constituent phases of each SiAlON ceramic, such as α-SiAlON, β-SiAlON, and intergranular phases, are identified. By evaluating the mechanical and thermal properties, the contribution of the constituent phases to these properties is discussed as well.

Influence of Deposition Parameters on Film Hardness for Newly Synthesized BON Thin Film by Low Frequency R.F. PEMOCVD

  • G.C. Chen;J.-H. Boo;Kim, Y.J.;J.G. Han
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.06a
    • /
    • pp.73-73
    • /
    • 2001
  • Boron-containing materials have several excellent properties, such as superlnardness, insulation and non-Rinear optical property. Recently, oxynitride compounds, such as Si(ON), Ti(ON), became the promising materials applied in diffusion barrier layer and solar cell. With the expectation of obtaining the hybrid property, we have firstly grown the BON thin film by radio frequency (R.F.) plasma enhanced metalorganic chemical vapm deposition (PEMOCVD) with 100 kHz frequency and trimethyl borate precursor. The plasma source gases used in this study were Ar and $H_2$, and two kinds of nhmgen source gases, $N_2$ and <$NH_3$, were also employed. The as-grown films were characterized by XPS, IR, SEM and Knoop microlhardness tester. The relationship between the films hardness and the growth rate indicated that the hardness of the film was dependent on several factors such as nitrogen source gas, substrate temperature and film thickness due to the variation of the composition and the structure of the film. Both nitrogen and carbon content could raise the film hardness, on which nitrogen content did stronger effect than carbon. The smooth morphology and continuous structure was benefit of obtaining high hardness. The maximum hardness of BON film was about 10 GPa.

  • PDF

Thin Film Battery Using Micro-Well Patterned Titanium Substrates Prepared by Wet Etching Method

  • Nam, Sang-Cheol;Park, Ho-Young;Lim, Young-Chang;Lee, Ki-Chang;Choi, Kyu-Gil;Park, Gi-Back
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.2
    • /
    • pp.100-104
    • /
    • 2008
  • Titanium sheet metal substrates used in thin film batteries were wet etched and their surface area was increased in order to increase the discharge capacity and power density of the batteries. To obtain a homogeneous etching pattern, we used a conventional photolithographic process. Homogeneous hemisphere-shaped wells with a diameter of approximately $40\;{\mu}m$ were formed on the surface of the Ti substrate using a photo-etching process with a $20\;{\mu}m{\times}20\;{\mu}m$ square patterned photo mask. All-solid-state thin film cells composed of a Li/Lithium phosphorous oxynitride (Lipon)/$LiCoO_2$ system were fabricated onto the wet etched substrate using a physical vapor deposition method and their performances were compared with those of the cells on a bare substrate. It was found that the discharge capacity of the cells fabricated on wet etched Ti substrate increased by ca. 25% compared to that of the cell fabricated on bare one. High discharge rate was also able to be obtained through the reduction in the internal resistance. However, the cells fabricated on the wet etched substrate exhibited a higher degradation rate with charge-discharge cycling due to the nonuniform step coverage of the thin films, while the cells on the bare substrate demonstrated a good cycling performance.

Pressureless Sintered Nitride Composites in the AlN-Al2O3 System (AlN-Al2O3 계에서의 상압소결 질화물복합체)

  • Kim, Young Woo;Kim, Kyu Heon;Kim, Dong Hyun;Yoon, Seog Young;Park, Hong Chae
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.498-504
    • /
    • 2014
  • Particulate nitride composites have been fabricated by sintering the compacted powder of AlN and 5 - 64.3 mol% $Al_2O_3$, with a small addition of $Y_2O_3$ ($Y_2O_3$/AlN, 1 wt%), in 1-atm nitrogen gas at $1650-1900^{\circ}C$. The composites were characterized in terms of sintering behavior, phase relations, microstructure and thermal shock resistance. AlN, 27R AlN pseudopolytype, and alminium oxynitride (AlON, $5AlN{\cdot}9Al_2O_3$) were found to existin the sintered material. Regardless of batch composition, the AlN-$Al_2O_3$ powder compacts exhibited similar sintering behavior; however, the degree of shrinkage commonly increased with increasing $Al_2O_3$ content, consequently giving high sintered bulk density. By increasing the $Al_2O_3$ addition up to ${\geq}50 mol%$, the matrix phase in the sintered material was converted from AlN or 27R to AlON. Above $1850^{\circ}C$, a liquid phase was formed by the reaction of $Al_2O_3$ with AlN, aided by $Y_2O_3$ and mainly existed at the grain boundaries of AlON. Thermal shock resistance was superior in the sintered composite consisting of AlON with dispersed AlN or AlN matrix phase.

Phase Formation and Physical Properties of SiAlON Ceramics Fabricated by Gas-Pressure Reactive Sintering (가스압 반응소결로 제조된 SiAlON 세라믹스의 상형성과 물리적 특성)

  • Lee, Soyul;Choi, Jae-Hyeong;Han, Yoonsoo;Lee, Sung-Min;Kim, Seongwon
    • Journal of Powder Materials
    • /
    • v.24 no.6
    • /
    • pp.431-436
    • /
    • 2017
  • SiAlON-based ceramics are some of the most typical oxynitride ceramic materials, which can be used as cutting tools for heat-resistant super-alloys (HRSA). SiAlON can be fabricated by using gas-pressure reactive sintering from the raw materials, nitrides and oxides such as $Si_3N_4$, AlN, $Al_2O_3$, and $Yb_2O_3$. In this study, we fabricate $Yb_{m/3}Si_{12-(m+n)}Al_{m+n}O_nN_{16-n}$ (m=0.3, n=1.9, 2.3, 2.7) ceramics by using gas-pressure sintering at different sintering temperatures. Then, the densification behavior, phase formation, microstructure, and hardness of the sintered specimens are characterized. We obtain a fully densified specimen with ${\beta}$-SiAlON after gas-pressure sintering at $1820^{\circ}C$ for 90 min. under 10 atm $N_2$ pressure. These SiAlON ceramic materials exhibited hardness values of ~92.9 HRA. The potential of these SiAlON ceramics for cutting tool application is also discussed.

Fabrication and Electrochemical Characterization of All Solid-State Thin Film Micro-Battery by in-situ Sputtering (In-situ 스퍼터링을 이용한 잔고상 박막 전지의 제작 및 전기화학적 특성 평가)

  • Jeon Eun Jeong;Yoon Young Soo;Nam Sang Cheol;Cho Won Il;Shin Young Wha
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.2
    • /
    • pp.115-120
    • /
    • 2000
  • All solid-state thin film micro-batteries consisting of lithium metal anode, an amorphous LiPON electrolyte and cathode of vanadium oxide have been fabricated and characterized, which were fabricated with cell structure of $Li/LiPON/V_2O_5Pt$. The effect of various oxygen partial pressure on the electrochemical properties of vanadium oxide thin films formed by d.c. reactive sputtering deposition were investigated. The vanadium oxide thin film with deposition condition of $20\%\;O_2/Ar$ ratio showed good cycling behavior. In in-siか process, the LiPON electrolyte was deposited on the $V_2O_5$ films without breaking vacuum by r.f. magnetron sputtering at room temperature. After deposition of the amorphous LiPON, the Li metal films were grown by a thermal evaporator in a dry room. The charge-discharge cycle measurements as a function of current density and voltage variation revealed that the $Li/LiPON/V_2O_5$ thin film had excellent rechargeable properly when current density was $7{\mu}A/cm^2$. and cut-off voltage was between 3.6 and 2.7V In practical experiment, a stopwatch ran on this $Li/LiPON/V_2O_5$ thin film micro-battery. This result means that thin film micro-battery fabricated by in-siか process is a promising for power source for electronic devices.