• Title/Summary/Keyword: Oxygen-plasma treatment

Search Result 331, Processing Time 0.027 seconds

Inhibition of Foodborne Pathogens on Polystyrene, Sausage Casings, and Smoked Salmon Using Nonthermal Plasma Treatments (비열 플라즈마 처리를 이용한 polystyrene, 소시지 케이싱, 그리고 훈제연어에서의 식중독균 저해)

  • Lee, Hahn-Bit;Noh, Young-Eun;Yang, Hee-Jae;Min, Sea-Cheol
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.513-517
    • /
    • 2011
  • The effects of nonthermal plasma treatments against Salmonella Typhimurium, Escherichia coli O157:H7, and Listeria monocytogenes living on polystyrene (PS), sausage casings, and smoked salmon were investigated. Inoculated PS, casings, and salmon were treated with nonthermal plasma generated with helium (5 L/min) or with both helium (5 L/min) and oxygen (100 mL/min) at 60 Hz and 30 kV/cm for 2, 5, or 10 min. S. Typhimurium exhibited the highest sensitivity to the helium-used treatment. The greatest reduction (3.9${\pm}$0.8 log$CFU/cm^2$) was observed with L. monocytogenes on PS after the treatment with the mixed gas for 5 min. The treatment with the mixed gas inhibited L. monocytogenes on casings and salmon by 0.5${\pm}$0.3 log$CFU/cm^2$ and 1.0${\pm}$0.3 log CFU/g, respectively. Different treatment times did not result in different reductions of L. monocytogenes on both casings and salmon. The types of treatment gas and material of contamination need to be considered for evaluating the antimicrobial effects of nonthermal plasma treatments.

Effect of Plasma-activated Water Process on the Growth and Functional Substance Content of Lettuce during the Cultivation Period in a Deep Flow Technique System (담액수경재배 시스템에서 플라즈마수 처리가 상추의 생육 및 페놀류 함량에 미치는 영향)

  • Noh, Seung Won;Park, Jong Seok;Kim, Sung Jin;Kim, Dae-Woong;Kang, Woo Seok
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.464-472
    • /
    • 2020
  • We suggest a hydroponic cultivation system combined with a plasma generator to investigate the changes in the growth and functional substance content of lettuces during the cultivation period. Lettuce seedlings of uniform size were planted in semi-DFT after seeding for 3 weeks, and the plasma-activated water was intermittently operated for 1 hour at an 8 hours cycle for 4 weeks. Lettuces grew with or without plasma-activated water with the nutrient solution in hydroponics culture systems. Among the reactive oxygen species generated during plasma-activated water treatment, brown spots and necrosis appeared in the individuals closer to the plasma generating device due to O3, and there was no significant difference in the growth parameters. While the rutin and total phenolic content of the lettuce shoot grown in the nutrient solution were higher than that of the plasma-activated water, epicatechin contents in plasma-activated water were significantly greater than the nutrient solution. However, in the roots, all kinds of secondary metabolites measured in this work, rutin, epicatechin, quercetin, and total phenolic contents, were significantly higher in the plasma-activated water than the control. These results were indicated that the growth of lettuce was decreased due to the reactive oxygen species such as ozone in the plasma-activated water, but the secondary metabolites in the root zone increased significantly. It has needed to use this technology for the cultivation of root vegetables with the modified plasma-activated water systems to increase secondary metabolite in the roots.

Modeling the Chemical Kinetics of Atmospheric Plasma

  • Kim, Ho-Yeong;Lee, Hyeon-U;Kim, Gyu-Cheon;Lee, Jae-Gu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.270-270
    • /
    • 2012
  • Low temperature atmospheric pressure plasmas (APPs) have been known to be effective for living cell inactivation in the water [1]. Many earlier research found that pH level of the solution was changed from neutral to acidic after plasma treatment. The importance of the effect of acidity of the solution for cell treatments has already been reported by many experiments. In addition, several studies have demonstrated that the addition of a small amount of oxygen to pure helium results in higher sterilization efficiency of APPs [2]. However, it is not clear yet which species are key factors for the cell treatment. To find key factors, we used GMoo simulation. We elucidate the processes through which pH level in the solution is changed from neutral to acidic after plasma exposure and key components with pH and air variation with using GMoo simulation. First, pH level in a liquid solution is changed by He+ and He(21S) radicals. Second, O3 density decreases as pH level in the solution decreases and air concentration decreases. It can be a method of removing O3 that cause chest pain and damage lung tissue when the density is very high. H2O2, HO2 and NO radicals are found to be key factors for cell inactivation in the solution with pH and air variation.

  • PDF

Methylglyoxal Induces Mitochondrial Dysfunction and Cell Death in Liver

  • Seo, Kyuhwa;Ki, Sung Hwan;Shin, Sang Mi
    • Toxicological Research
    • /
    • v.30 no.3
    • /
    • pp.193-198
    • /
    • 2014
  • Degradation of glucose is aberrantly increased in hyperglycemia, which causes various harmful effects on the liver. Methylglyoxal is produced during glucose degradation and the levels of methylglyoxal are increased in diabetes patients. In this study we investigated whether methylglyoxal induces mitochondrial impairment and apoptosis in HepG2 cells and induces liver toxicity in vivo. Methylglyoxal caused apoptotic cell death in HepG2 cells. Moreover, methylglyoxal significantly promoted the production of reactive oxygen species (ROS) and depleted glutathione (GSH) content. Pretreatment with antioxidants caused a marked decrease in methylglyoxal-induced apoptosis, indicating that oxidant species are involved in the apoptotic process. Methylglyoxal treatment induced mitochondrial permeability transition, which represents mitochondrial impairment. However, pretreatment with cyclosporin A, an inhibitor of the formation of the permeability transition pore, partially inhibited methylglyoxal-induced cell death. Furthermore, acute treatment of mice with methylglyoxal increased the plasma levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), indicating liver toxicity. Collectively, our results showed that methylglyoxal increases cell death and induces liver toxicity, which results from ROS-mediated mitochondrial dysfunction and oxidative stress.

A Study on Feasibility of the Phosphoric Acid Doping for Solar Cell Using Newly Atmospheric Pressure Plasma Source (새로운 대기압 플라즈마 소스를 이용한 결정질 실리콘 태양전지 인산 도핑 가능성에 관한 연구)

  • Cho, I-Hyun;Yun, Myoung-Soo;Jo, Tae-Hoon;Kwon, Gi-Chung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.6
    • /
    • pp.95-99
    • /
    • 2013
  • Furnace is currently the most important doping process using POCl3 in solar cell. However furnace need an expensive equipment cost and it has to purge a poisonous gas. Moreover, furnace typically difficult appling for selective emitters. In this study, we developed a new atmospheric pressure plasma source, in this procedure, we research the atmospheric pressure plasma doping that dopant is phosphoric acid($H_3PO_4$). Metal tube injected Ar gas was inputted 5 kV of a low frequency(scores of kHz) induced inverter, so plasma discharged at metal tube. We used the P type silicon wafer of solar cell. We regulated phosphoric acid($H_3PO_4$) concentration on 10% and plasma treatment time is 90 s, 150 s, we experiment that plasma current is 70 mA. We check the doping depth that 287 nm at 90 s and 621 nm at 150 s. We analysis and measurement the doping profile by using SIMS(Secondary Ion Mass Spectroscopy). We calculate and grasp the sheet resistance using conventional sheet resistance formula, so there are 240 Ohm/sq at 90 s and 212 Ohm/sq at 150 s. We analysis oxygen and nitrogen profile of concentration compared with furnace to check the doped defect of atmosphere.

The Influence of Surface-modified ITO by Ion Beam Irradation on the Organic EL Performances (이온빔으로 조사된 ITO 전극 표면이 유기 EL 소자성능에 미치는 영향)

  • Oh, Jae-young;Joo, Jin-soo;Lee, Chun-An;Park, Byung-Gook;Kim, Dong-hwan
    • Korean Journal of Materials Research
    • /
    • v.13 no.3
    • /
    • pp.191-194
    • /
    • 2003
  • The influence of on ion beam irradiation to the indium tin oxide (ITO) substrate on the performance of the organic light-emitting diodes (OLEDs) was studied. ITO films were used as the transparent anode of OLEDs with poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV) as a hole-injection/transport layer. Oxygen and argon plasma treatment of ITO resulted in a change in the work function and the chemical composition. For plasma treated ITO anodes, the device efficiency clearly correlated with the value of the work function. We also discussed the implications of our experimental study in relation to the modification of the ITO surface composition, transmittance, reflectance, and water contact angle (WCA).

Effect of Hydrogen Reduction Treatment on Room-Temperature Thermoelectric Performance of p-type Thermoelectric Powders (P형 열전분말의 수소환원처리가 상온열전특성에 미치는 영향)

  • Kim, Kyung-Tae;Jang, Kyeong-Mi;Ha, Gook-Hyun
    • Journal of Powder Materials
    • /
    • v.17 no.2
    • /
    • pp.136-141
    • /
    • 2010
  • Bismuth-telluride based $(Bi_{0.2}Sb_{0.8})_2Te_3$ thermoelectric powders were fabricated by two-step planetary milling process which produces bimodal size distribution ranging $400\;nm\;{\sim}\;2\;{\mu}m$. The powders were reduced in hydrogen atmosphere to minimize oxygen contents which cause degradation of thermoelectric performance by decreasing electrical conductivity. Oxygen contents were decreased from 0.48% to 0.25% by the reduction process. In this study, both the as-synthesized and the reduced powders were consolidated by the spark plasma sintering process at $350^{\circ}C$ for 10 min at the heating rate of $100^{\circ}C/min$ and then their thermoelectric properties were investigated. The sintered samples using the reduced p-type thermoelectric powders show 15% lower specific electrical resistivity ($0.8\;m{\Omega}{\cdot}cm$) than those of the as-synthesized powders while Seebeck coefficient and thermal conductivity do not change a lot. The results confirmed that ZT value of thermoelectric performance at room temperature was improved by 15% due to high electric conductivity caused by the controlled oxygen contents present at bismuth telluride materials.

Observation and Characteristics of Ozonizer using Injection Needle Electrode (주사바늘 전극형 오존발생기 특성 연구)

  • Park, Hyun-Mi;Kwon, Young-Hak;Park, Won-Zoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.12
    • /
    • pp.77-82
    • /
    • 2015
  • Ozone is a powerful disinfectant and oxidizing agent, and it is used in a wide range of applications, such as waste water treatment, food processing, etc.. There is also a great potential of using ozone in new emerging medical applications, such as ozone dentistry and ozone oxygen therapy. For these purposes, simple, small, compact and efficient sources of ozone are needed. In this study, in order to increase the current-voltage range of the discharge and to avoid the overheating of the gas in the ozonizer we suggested ozonizer of injection needle and plate electrode type(INP Type) with the gas through the needle. A ozonizer of INP type have been investigated by focusing on ozone concentration and yield according to flow rates and Gap of two electrodes. The results of studies of ozone production for DC corona discharge in oxygen at atmospheric pressure about the ozonizer of INP type. The ozone concentration and the generation yield increased as the gap of two electrodes and gas flow were decreased. Also, when the gap of two electrodes and gas flow with no change, the ozone concentration and generation yield each have variation of direct proportion and inverse proportion with discharge voltage.

A Study on an Operating Conditions for the Direct Ethanol Fuel Cell (직접에탄올 연료전지의 운전조건에 관한 연구)

  • Kim, Young-Chun;Koo, Bon-Kook;Jang, Mun-Gug;Ji, Hag-Bae;Han, Sang-Bo;Park, Jae-Youn
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2076-2082
    • /
    • 2011
  • The goal of this paper is to find an operating conditions of the single direct ethanol fuel cell such as the cell temperature, and flow rates of ethanol and oxygen. To investigate the output characteristics, the electrical current increased from 0[A] with interval of 0.001[A] every 2[s], and the cell voltage was increased until the voltage became 0.05[V]. Related to the effect of the cell temperature, the output characteristics both voltage and power were increased upto 80[$^{\circ}C$] according to the increase of the current density, but those were decreased over that temperature. In addition, the optimal flow rate of ethanol in anode was identified as of 2[mL/min] due to the dependence of generation rate such as the hydrogen ion and electron. And the flow rate of oxygen in cathode was desirable to about 300[sccm/min], it might be affected by the chemical reaction rate of the water formation among hydrogen ion, electron, and oxygen. Consequently, the fundamental conditions were identified in this work, and it will be carried out to find the best conditions of membrane by the effect of the plasma surface treatment, and the effect of other catalysts except for a platinum.

PL Study on the Oxygen-Plasma-Treated ZnO Thin Film (산소 플라즈마 처리 후 ZnO 박막에 대한 PL 연구)

  • Cho, Jae-Won;Rhee, Seuk-Joo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.12
    • /
    • pp.992-995
    • /
    • 2011
  • The optical properties of ZnO thin film, being treated by O-plasma, have been studied using Photoluminescence(PL) spectroscopy with the change of temperature from 10 K to 290 K. Two characteristic peaks were identified at 10 K : 3.357 eV($D^{\circ}X$) and 3.324 eV(TES). The peak of $D^{\circ}X$ is believed to be due to neutral donor bound excitons where the donor is in the ground state. However, the TES(Two Electron Satellite) peak indicates the excited state of the donor(excitation energy was ~30 meV). The donor binding energy was estimated to be 44 meV, which indicates the possible presence of the neutral donor bound excitons at RT. The thermal effect including thermal broadening was identified from temperature evolution of the spectrum. Both the peak intensity and the peak energy have decreased as the temperature increases. As the temperature approaches to RT, the two peak merges into one broad peak, which is considered a combination of multiple peaks having different physical origins.