Browse > Article
http://dx.doi.org/10.5487/TR.2014.30.3.193

Methylglyoxal Induces Mitochondrial Dysfunction and Cell Death in Liver  

Seo, Kyuhwa (College of Pharmacy, Chosun University)
Ki, Sung Hwan (College of Pharmacy, Chosun University)
Shin, Sang Mi (College of Pharmacy, Chosun University)
Publication Information
Toxicological Research / v.30, no.3, 2014 , pp. 193-198 More about this Journal
Abstract
Degradation of glucose is aberrantly increased in hyperglycemia, which causes various harmful effects on the liver. Methylglyoxal is produced during glucose degradation and the levels of methylglyoxal are increased in diabetes patients. In this study we investigated whether methylglyoxal induces mitochondrial impairment and apoptosis in HepG2 cells and induces liver toxicity in vivo. Methylglyoxal caused apoptotic cell death in HepG2 cells. Moreover, methylglyoxal significantly promoted the production of reactive oxygen species (ROS) and depleted glutathione (GSH) content. Pretreatment with antioxidants caused a marked decrease in methylglyoxal-induced apoptosis, indicating that oxidant species are involved in the apoptotic process. Methylglyoxal treatment induced mitochondrial permeability transition, which represents mitochondrial impairment. However, pretreatment with cyclosporin A, an inhibitor of the formation of the permeability transition pore, partially inhibited methylglyoxal-induced cell death. Furthermore, acute treatment of mice with methylglyoxal increased the plasma levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), indicating liver toxicity. Collectively, our results showed that methylglyoxal increases cell death and induces liver toxicity, which results from ROS-mediated mitochondrial dysfunction and oxidative stress.
Keywords
Methylglyoxal; Reactive oxygen species; Mitochondrial dysfunction; Oxidative stress; Liver;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Choudhary, D., Chandra, D. and Kale, R.K. (1997) Influence of methylglyoxal on antioxidant enzymes and oxidative damage. Toxicol. Lett., 93, 141-152.   DOI   ScienceOn
2 Rej, R. (1978) Aspartate aminotransferase activity and isoenzyme proportions in human liver tissues. Clin. Chem., 24, 1971-1979.
3 Cheng, A.S., Cheng, Y.H., Chiou, C.H. and Chang, T.L. (2012) Resveratrol upregulates Nrf2 Expression to attenuate methylglyoxal-induced insulin resistance in Hep G2 cells. J. Agric. Food Chem., 60, 9180-9187.   DOI   ScienceOn
4 Masterjohn, C., Mah, E., Park, Y., Pei, R., Lee, J., Manautou, J.E. and Bruno, R.S. (2013) Acute glutathione depletion induces hepatic methylglyoxal accumulation by impairing its detoxification to D-lactate. Exp. Biol. Med. (Maywood), 238, 360-369.   DOI
5 Li, W., Xu, H., Hu, Y., He, P., Ni, Z., Xu, H., Zhang, Z. and Dai, H. (2013) Edaravone protected human brain microvascular endothelial cells from methylglyoxal-induced injury by inhibiting AGEs/RAGE/oxidative stress. PLoS One, 8, e76025.   DOI
6 Fiory, F., Lombardi, A., Miele, C., Giudicelli, J., Beguinot, F. and Van Obberghen, E. (2011) Methylglyoxal impairs insulin signalling and insulin action on glucose-induced insulin secretion in the pancreatic beta cell line INS-1E. Diabetologia, 54, 2941-2952.   DOI   ScienceOn
7 Li, W., Maloney, R.E., Circu, M.L., Alexander, J.S. and Aw, T.Y. (2013) Acute carbonyl stress induces occludin glycation and brain microvascular endothelial barrier dysfunction: role for glutathione-dependent metabolism of methylglyoxal. Free Radical Biol. Med., 54, 51-61.   DOI   ScienceOn
8 Sorci, G., Riuzzi, F., Giambanco, I. and Donato, R. (2013) RAGE in tissue homeostasis, repair and regeneration. Biochim. Biophys. Acta, 1833, 101-109.   DOI   ScienceOn
9 Ramasamy, R., Yan, S.F. and Schmidt, A.M. (2012) The diverse ligand repertoire of the receptor for advanced glycation endproducts and pathways to the complications of diabetes. Vasc. Pharmacol., 57, 160-167.   DOI   ScienceOn
10 Ren, J., Pulakat, L., Whaley-Connell, A. and Sowers, J.R. (2010) Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease. J. Mol. Med., 88, 993-1001.   DOI   ScienceOn
11 Kim, J.S., He, L. and Lemasters, J.J. (2003) Mitochondrial permeability transition: a common pathway to necrosis and apoptosis. Biochem. Biophys. Res. Commun., 304, 463-470.   DOI   ScienceOn
12 Lemasters, J.J., Nieminen, A.L., Qian, T., Trost, L.C., Elmore, S.P., Nishimura, Y., Crowe, R.A., Cascio, W.E., Bradham, C.A., Brenner, D.A. and Herman, B. (1998) The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim. Biophys. Acta, 1366, 177-196.   DOI   ScienceOn
13 Shin, S.M., Cho, I.J. and Kim, S.G. (2009) Resveratrol protects mitochondria against oxidative stress through AMP-activated protein kinase-mediated glycogen synthase kinase-$3{\beta}$ inhibition downstream of poly(ADP-ribose)polymerase-LKB1 pathway. Mol. Pharmacol., 76, 884-895.   DOI   ScienceOn
14 Yu, S.W., Wang, H., Poitras, M.F., Coombs, C., Bowers, W.J., Federoff, H.J., Poirier, G.G., Dawson, T.M. and Dawson, V.L. (2002) Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science, 297, 259-263.   DOI   ScienceOn
15 Rolo, A.P. and Palmeira, C.M. (2006) Diabetes and mitochondrial function: Role of hyperglycemia and oxidative stress. Toxicol. Appl. Pharmacol., 212, 167-178.   DOI   ScienceOn
16 Yan, S.D., Schmidt, A.M., Anderson, G.M., Zhang, J., Brett, J., Zou, Y.S., Pinsky, D. and Stern, D. (1994) Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. J. Biol. Chem., 269, 9889-9897.
17 Brouwers, O., Niessen, P.M., Ferreira, I., Miyata, T., Scheffer, P.G., Teerlink, T., Schrauwen, P., Brownlee, M., Stehouwer, C.D. and Schalkwijk, C.G. (2011) Overexpression of glyoxalase-I reduces hyperglycemia-induced levels of advanced glycation end products and oxidative stress in diabetic rats. J. Biol. Chem., 286, 1374-1380.   DOI   ScienceOn
18 Meister, A. and Anderson. M.E. (1983) Glutathione. Annu. Rev. Biochem., 52, 711-760.   DOI   ScienceOn
19 Mukohda, M., Okada, M., Hara, Y. and Yamawaki, H. (2012) Exploring mechanisms of diabetes-related macrovascular complications: role of methylglyoxal, a metabolite of glucose on regulation of vascular contractility. J. Pharmacol. Sci., 118, 303-310.   DOI
20 Ramasamy, R., Yan, S.F. and Schmidt, A.M. (2011) Receptor for AGE (RAGE): signaling mechanisms in the pathogenesis of diabetes and its complications. Ann. N.Y. Acad. Sci., 1243, 88-102.   DOI   ScienceOn
21 Ruggiero-Lopez, D., Lecomte, M., Moinet, G., Patereau, G., Lagarde, M. and Wiernsperger, N. (1999) Reaction of metformin with dicarbonyl compounds. possible implication in the inhibition of advanced glycation end product formation. Biochem. Pharmacol., 58, 1765-1773.   DOI   ScienceOn
22 Lee, B.H., Hsu, W.H., Chang, Y.Y., Kuo, H.F., Hsu, Y.W. and Pan, T.M. (2012) Ankaflavin: a natural novel PPARn agonist upregulates Nrf2 to attenuate methylglyoxal-induced diabetes in vivo. Free Radical Biol. Med., 53, 2008-2016.   DOI   ScienceOn
23 Jiang, G. and Zhang, B.B. (2003) Glucagon and regulation of glucose metabolism. Am. J. Physiol. Endocrinol. Metab., 284, E671-678.   DOI
24 Marceau, P., Biron, S., Hould, F.S., Marceau, S., Simard, S., Thung, S.N. and Kral, J.G. (1999) Liver pathology and the metabolic syndrome X in severe obesity. J. Clin. Endocrinol. Metab., 84, 1513-1517.   DOI
25 Rabbani, N. and Thornalley, P.J. (2011) Glyoxalase in diabetes, obesity and related disorders. Semin. Cell Dev. Biol., 22, 309-317.   DOI   ScienceOn
26 Pun, P.B., Logan, A., Darley-Usmar, V., Chacko, B., Johnson, M.S., Huang, G.W., Rogatti, S., Prime, T.A., Methner, C., Krieg, T., Fearnley, I.M., Larsen, L., Larsen, D.S., Menger, K.E., Collins, Y., James, A.M., Kumar, G.D., Hartley, R.C., Smith, R.A. and Murphy, M.P. (2014) A mitochondria-targeted mass spectrometry probe to detect glyoxals: implications for diabetes. Free Radical Biol. Med., 67, 437-450.   DOI   ScienceOn
27 Gaens, K.H., Stehouwer, C.D. and Schalkwijk, C.G. (2013) Advanced glycation endproducts and its receptor for advanced glycation endproducts in obesity. Curr. Opin. Lipidol., 24, 4-11   DOI
28 Shinohara, M., Thornalley, P.J., Giardino, I., Beisswenger, P., Thorpe, S.R., Onorato, J. and Brownlee, M. (1998) Overexpression of glyoxalase-I in bovine endothelial cells inhibits intracellular advanced glycation endproduct formation and prevents hyperglycemia-induced increases in macromolecular endocytosis. J. Clin. Invest., 101, 1142-1147.   DOI   ScienceOn
29 Tappy, L. and Le, K.A. (2012) Does fructose consumption contribute to non-alcoholic fatty liver disease? Clin. Res. Hepatol. Gastroenterol., 36, 554-560.   DOI   ScienceOn
30 Cai, W., Ramdas, M., Zhu, L., Chen, X., Striker, G.E. and Vlassara, H. (2012) Oral advanced glycation endproducts (AGEs) promote insulin resistance and diabetes by depleting the antioxidant defenses AGE receptor-1 and sirtuin 1. Proc. Natl. Acad. Sci. U.S.A., 109, 15888-15893.   DOI
31 Beisswenger, P.J., Howell, S.K., Touchette, A.D., Lal, S. and Szwergold, B.S. (1999) Metformin reduces systemic methylglyoxal levels in type 2 diabetes. Diabetes, 48, 198-202.   DOI   ScienceOn
32 Yu, S.W., Andrabi, S.A., Wang, H., Kim, N.S., Poirier, G.G., Dawson, T.M. and Dawson, V.L. (2006) Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death. Proc. Natl. Acad. Sci. U.S.A., 103, 18314-18319.   DOI   ScienceOn