• Title/Summary/Keyword: Oxygen functional groups

Search Result 216, Processing Time 0.025 seconds

CO2 adsorption characteristics of slit-pore shaped activated carbon prepared from cokes with high crystallinity

  • Park, Mi-Seon;Lee, Si-Eun;Kim, Min Il;Lee, Young-Seak
    • Carbon letters
    • /
    • v.16 no.1
    • /
    • pp.45-50
    • /
    • 2015
  • High crystallinity coke-based activated carbon (hc-AC) is prepared using a potassium hydroxide solution to adsorb carbon dioxide ($CO_2$). The $CO_2$ adsorption characteristics of the prepared hc-AC are investigated at different temperatures. The X-ray diffraction patterns indicate that pitch-based cokes prepared under high temperature and pressure have a high crystal structure. The textural properties of hc-AC indicate that it consists mainly of slit-like pores. Compared to other textural forms of AC that have higher pore volumes, this slit-pore-shaped hc-AC exhibits higher $CO_2$ adsorption due to the similar shape between its pores and $CO_2$ molecules. Additionally, in these high-crystallinity cokes, the main factor affecting $CO_2$ adsorption at lower temperature is the pore structure, whereas the presence of oxygen functional groups on the surface has a greater impact on $CO_2$ adsorption at higher temperature.

Control of size and physical properties of graphene oxide by changing the oxidation temperature

  • Kang, Dong-Woo;Shin, Hyeon-Suk
    • Carbon letters
    • /
    • v.13 no.1
    • /
    • pp.39-43
    • /
    • 2012
  • The size and the physical properties of graphene oxide sheets were controlled by changing the oxidation temperature of graphite. Graphite oxide (GO) samples were prepared at different oxidation temperatures of $20^{\circ}C$, $27^{\circ}C$ and $35^{\circ}C$ using a modified Hummers' method. The carbon-to-oxygen (C/O) ratio and the average size of the GO sheets varied according to the oxidation temperature: 1.26 and 12.4 ${\mu}m$ at $20^{\circ}C$, 1.24 and 10.5 ${\mu}m$ at $27^{\circ}C$, and 1.18 and 8.5 ${\mu}m$ at $35^{\circ}C$. This indicates that the C/O ratio and the average size of the graphene oxide sheets respectively increase as the oxidation temperature decreases. Moreover, it was observed that the surface charge and optical properties of the graphene oxide sheets could be tuned by changing the temperature. This study demonstrates the tunability of the physical properties of graphene oxide sheets and shows that the properties depend on the functional groups generated during the oxidation process.

Removal of Pb(II) and Cd(II) From Aqueous solution Using Oxidized Activated Carbons Developed From Pecan Shells.

  • Youssef, A.M.;EL-Khouly, Sahar M.;El-Nabarawy, Th.
    • Carbon letters
    • /
    • v.9 no.1
    • /
    • pp.8-16
    • /
    • 2008
  • Oxidized activated carbons were prepared by reacting steam-activated carbon developed from pecan shells with nitric acid of varying strength (15, 30, 45 and 60%). The textural properties and the chemistry of the surface of the non-oxidized and of the oxidized carbons were determined from nitrogen adsorption and base neutralization capacities. The uptake of Pb(II) and Cd(II) from aqueous solution by these carbons was determined by kinetic and equilibrium experiments as well as by the column method. Treatment with nitric acid brought about drastic decrease in surface area and remarkable increase in the pore size of the carbon with these changes depending on the strength of nitric acid. Nitric acid increased the surface acidity by developing new surface oxygen functional groups of acidic nature. $HNO_3$-oxidized carbons exhibited high adsorption capacities for Pb(II) and Cd(II). The adsorption of these ions increased with the decrease of the surface pH of the carbon and with the increase of the solution pH from 2.5 to 6 and 7. The amount adsorbed from lead and cadmium was also related to the amount of surface acidity, the pH of the point of zero charge and on some metal ion parameters. Cadmium and lead uptake by the investigated carbons followed pseudo-second order model and the equilibrium sorption data fitted Langmuir adsorption model.

Lower cellular metabolic power can be an explanation for obesity trend in Tae-Eum type: hypothesis and clinical observation

  • Shim, Eun Bo;Leem, Chae Hun;Kim, Joong Jae;Kim, Jong Yeol
    • Integrative Medicine Research
    • /
    • v.6 no.3
    • /
    • pp.254-259
    • /
    • 2017
  • Background: Those classified as Tae-Eum (TE)-type people in Sasang constitutional medicine (SCM) are prone to obesity. Although extensive clinical observations have confirmed this tendency, the underlying physiological mechanisms are unknown. Here, we propose a novel hypothesis using integrative physiology to explain this phenomenon. Methods: Hypoactive lung function in the TE type indicates that respiration is attenuated at the cellular level - specifically, mitochondrial oxygen consumption. Because a functional reduction in cellular energy metabolism is suggestive of intrinsic hypoactivity in the consumption (or production) of metabolic energy, we reasoned that this tendency can readily cause weight gain via an increase in anabolism. Thus, this relationship can be derived from the graph of cellular metabolic power plotted against body weight. We analyzed the clinical data of 548 individuals to test this hypothesis. Results: The statistical analysis revealed that the cellular metabolic rate was lower in TEtype individuals and that their percentage of obesity (body mass index >25) was significantly higher compared to other constitutional groups. Conclusion: Lower cellular metabolic power can be an explanation for the obesity trend in TE type people.

Influence of Inductively Coupled Oxygen Plasma on the Surface of Poly(ether sulfone)

  • Lee, Do Kyung;Sohn, Young-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.214-217
    • /
    • 2022
  • The effect of inductively coupled plasma (ICP) treatment with O2 gas on the surface properties of poly(ether sulfone) (PES) was investigated. X-ray photoelectron spectroscopy (XPS) was used to analyze the chemical characteristics of the O2 plasma-treated PES films. The surface roughness of the pristine and O2 plasma-treated PES films for different RF powers of the ICP was determined using an atomic force microscope (AFM). The contact angles of the PES films were also measured, using which the surface free energies were calculated. The O1s XPS spectra of the PES films revealed that the number of polar functional groups increased following the O2 plasma treatment. The AFM analysis showed the average surface roughness increased from 1.01 to 4.48 nm as the RF power of the ICP was increased. The contact angle measurements revealed that the PES films became more hydrophilic as the RF power of the ICP was increased. The total surface energy increased with the RF power of the ICP, resulting from the increased polar energy component.

Surface Functionalization of Carbon Fiber for High-Performance Fibrous Supercapacitor (고성능 섬유형 슈퍼커패시터를 위한 탄소섬유의 표면 기능화)

  • Lee, Young-Geun;An, Geon-Hyoung
    • Korean Journal of Materials Research
    • /
    • v.32 no.2
    • /
    • pp.107-113
    • /
    • 2022
  • Fibrous supercapacitors (FSs), owing to their high power density, good safety characteristic, and high flexibility, have recently been in the spotlight as energy storage devices for wearable electronics. However, despite these advantages, FCs face many challenges related to their active material of carbon fiber (CF). CF has low surface area and poor wettability between electrode and electrolyte, which result in low capacitance and poor long-term stability at high current densities. To overcome these limits, fibrous supercapacitors made using surface-activated CF (FS-SACF) are here suggested; these materials have improved specific surface area and better wettability, obtained by introducing porous structure and oxygen-containing functional groups on the CF surface, respectively, through surface engineering. The FS-SACF shows an improved ion diffusion coefficient and better electrochemical performance, including high specific capacity of 223.6 mF cm-2 at current density of 10 ㎂ cm-2, high-rate performance of 171.2 mF cm-2 at current density of 50.0 ㎂ cm-2, and remarkable, ultrafast cycling stability (96.2 % after 1,000 cycles at current density of 250.0 ㎂ cm-2). The excellent electrochemical performance is definitely due to the effects of surface functionalization on CF, leading to improved specific surface area and superior ion diffusion capability.

Structure and action mechanism of humic substances for plant stimulations

  • Jeon, Jong-Rok;Yoon, Ho Young;Shin, Gyeong-Im;Jeong, Song Yi;Cha, Joon-Yung;Kim, Woe-Yeon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.38 no.3
    • /
    • pp.175-179
    • /
    • 2018
  • Humic substances that can be obtained from coal resources such as leonardite in a bulk scale have been employed as crop stimulators and soil conditioners. The polymeric organics containing a variety of aromatic and aliphatic structures are known to activate plants in a multifunctional way, thus resulting in enhanced germination rate and abiotic stress resistance concomitant with induction of numerous genes and proteins. Although detailed structural-functional relationship of humic substances for plant stimulations has not been deciphered yet, cutting-edge analytical tools have unraveled critical features of humic architectures that could be linked to the action mechanisms of their plant stimulations. In this review article, we introduce key findings of humic structures and related biological functions that boost plant growth and abiotic stress resistance. Oxygen-based functional groups and plant hormone-like structures combined with labile and recalcitrant carbon backbones are believed to be critical moieties to induce plant stimulations. Some proteins such as HIGH-AFFINITY $K^+$ TRANSPORTER 1, phospholipase A2 and $H^+$-ATPase have been also recognized as key players that could be critically involved in humic substance-driven changes in plant physiology.

Effect of Reperfusate Solution with Latamoxef Sodium for Functional Recovery after Ischemic Cardiac Arrest in Sprague-dawley`s Isolated Heart (재관류액에 Latamoxef Sodium 첨가가 허혈성 심정지후 흰쥐 적출심장의 기능회복에 미치는 영향)

  • Ahn, B.H.;Hur, S.
    • Journal of Chest Surgery
    • /
    • v.24 no.4
    • /
    • pp.331-337
    • /
    • 1991
  • Recent experimental work indicates latamoxef sodium used as a broadspectrum antibiotics generates oxygen-free radicals. The present study represents an attempt to investigate whether reperfusate containing Shiomarin[85% latamoxef sodium+15% mannitol] might decrease the post-ischemic recovery of cardiac function. In the investigation, twelve isolated rat hearts were subjected to 270 minutes of cold total global ischemia. After the cold total global ischemia, six hearts[KHB group] were reperfused with Krebs-Henseleit buffer solution and the other six hearts[LMS group] with Krebs-Henseleit buffer solution containing latamoxef sodium[200ug /L]. Postischemic recovery rate of heart rate, aortic systolic pressure, aortic flow, coronary flow and cardiac output at 20 minutes reperfusion was 100.66$\pm$10.38, 85.25$\pm$7.61, 78.95$\pm$6. 02, 78.85$\pm$8.86 and 79.11$\pm$6.54 percent respectively in the KHB group and 97.96$\pm$4.19, 87. 72$\pm$4.37, 81.74$\pm$6.80, 82.69$\pm$10.01 and 81.90$\pm$6.67 percent respectively in the LMS group. The hemodynamic data revealed no significant difference in the post-ischemic recovery rate of the two groups. This finding suggests that reperfusate containing Shiomarin[latamoxef sodium, 200ug /L] does not affect the cardiac functional recovery after cold total global ischemia.

  • PDF

Characterizing Distribution Patterns of Major Aquatic Insect Assemblages (Ephemeroptera, Plecoptera, and Trichoptera) Based on Community Temperature Index at Headwater Streams (군집온도지수를 활용한 상류하천 주요 수서곤충의 군집 분포특성 분석: 하루살이목, 강도래목, 날도래목을 중심으로)

  • Dong-Won Shim;Da-Yeong Lee;Dae-Seong Lee;Young-Seuk Park
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.4
    • /
    • pp.305-319
    • /
    • 2022
  • The community temperature index (CTI) reflects the temperature and environmental preferences of the community. We investigated the distribution patterns of major aquatic insect assemblages (Ephemeroptera, Plecoptera, and Trichoptera; EPT) based on CTI in streams of South Korea. We selected unpolluted 151 study sites at upper streams(less than 3rd) with less than 1.5 mg L-1 of biochemical oxygen demand. Study sites were clustered into six groups based on the similarities of their EPT composition. All three orders showed a continuous decrease in the number of species as CTI increased, especially in Plecoptera. In addition, the functional feeding groups were also significantly changed according the CTI changes. Temperature tolerance range of each group's indicator species varied according to the CTI of the group. Finally, changes of CTI reflected differences of EPT assemblages according to the differences of environmental condition including temperature. Therefore, CTI can be applied to the evaluation and preservation of stream ecosystems and prediction of community changes due to climate change.

Fermentation of Citrus unshiu Marc. and Functional Characteristics of the Fermented Products (감귤의 발효와 발효산물의 기능적 특성)

  • Moon, Sang-Wook;Kang, Shin-Hae;Jin, Young-Joon;Park, Ji-Gweon;Lee, Young-Don;Lee, Young-Ki;Park, Deok-Bae;Kim, Se-Jae
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.669-676
    • /
    • 2004
  • Functional characteristics of citrus products fermented with lactic acid bacterium and yeast were investigated. Flavonoid composition of fermented citrus extracts increased significantly compared to control, leading to increases of naringenin and hesperetin concentrations. All citrus extracts showed anti-apoptotic effects in HepG2 cells regardless of fermentation, with citrus-fermented products showing greater anti-apoptotic effect and intracellular Reactive Oxygen Species content reduction compared to native citrus extracts. Male Sprague-Dawley rats were orally dosed with native or fermented citrus extracts. Singnificantly higher body weight reductions were observed in higher fermented citrus-dosed (100 mg/kg body weight) group compared to the other groups. Plasma total cholesterol level was slightly, but not significantly, reduced. Fatty liver formation induced by high-fat diet was significantly suppressed in rats administered with fermented citrus extracts. Results suggest fermented citrus extracts have potent anti-apoptotic and anti-oxidative activities in vitro, and inhibitory activity against fatty liver formation by high-fat diet in vivo.