Browse > Article
http://dx.doi.org/10.11614/KSL.2022.55.4.305

Characterizing Distribution Patterns of Major Aquatic Insect Assemblages (Ephemeroptera, Plecoptera, and Trichoptera) Based on Community Temperature Index at Headwater Streams  

Dong-Won Shim (Department of Biology, Kyung Hee University)
Da-Yeong Lee (Department of Biology, Kyung Hee University)
Dae-Seong Lee (Department of Biology, Kyung Hee University)
Young-Seuk Park (Department of Biology, Kyung Hee University)
Publication Information
Abstract
The community temperature index (CTI) reflects the temperature and environmental preferences of the community. We investigated the distribution patterns of major aquatic insect assemblages (Ephemeroptera, Plecoptera, and Trichoptera; EPT) based on CTI in streams of South Korea. We selected unpolluted 151 study sites at upper streams(less than 3rd) with less than 1.5 mg L-1 of biochemical oxygen demand. Study sites were clustered into six groups based on the similarities of their EPT composition. All three orders showed a continuous decrease in the number of species as CTI increased, especially in Plecoptera. In addition, the functional feeding groups were also significantly changed according the CTI changes. Temperature tolerance range of each group's indicator species varied according to the CTI of the group. Finally, changes of CTI reflected differences of EPT assemblages according to the differences of environmental condition including temperature. Therefore, CTI can be applied to the evaluation and preservation of stream ecosystems and prediction of community changes due to climate change.
Keywords
community temperature index; benthic macroinvertebrates; community index; functional feeding groups;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Sheldon, K.S., S. Yang and J.J. Tewksbury. 2011. Climate change and community disassembly: impacts of warming on tropical and temperate montane community structure. Ecology Letters 14: 1191-1200. 
2 Simpson, G.L. 2007. Analogue methods in palaeoecology: using the analogue package. Journal of Statistical Software 22:1-29.    DOI
3 Simpson, G.L. and J. Oksanen. 2021. analogue: Analogue and weighted averaging methods for palaeoecology. 
4 Somers, K.M., R.A. Reid and S.M. David. 1998. Rapid biological assessments: how many animals are enough? Journal of the North American Benthological Society 17: 348-358.    DOI
5 Statzner, B. and L.A. Beche. 2010. Can biological invertebrate traits resolve effects of multiple stressors on running water ecosystems? Freshwater Biology 55: 80-119.    DOI
6 Sundar, S., J. Heino, F.d. O. Roque, J.P. Simaika, A.S. Melo, J.D. Tonkin, D. Gomes Nogueira and D.P. Silva. 2020. Conservation of freshwater macroinvertebrate biodiversity in tropical regions. Aquatic Conservation: Marine and Freshwater Ecosystems 30: 1238-1250.    DOI
7 Tierno de Figueroa, J.M., M.J. Lopez-Rodriguez, A. Lorenz, W. Graf, A. Schmidt-Kloiber and D. Hering. 2010. Vulnerable taxa of European Plecoptera (Insecta) in the context of climate change. Biodiversity and Conservation 19: 1269-1277.    DOI
8 Vannote, R.L., G.W. Minshall, K.W. Cummins, J.R. Sedell and C.E. Cushing. 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130-137.    DOI
9 Verberk, W.C.E.P., I. Durance, I.P. Vaughan and S.J. Ormerod. 2016. Field and laboratory studies reveal interacting effects of stream oxygenation and warming on aquatic ectotherms. Global Change Biology 22: 1769-1778.    DOI
10 Ward, J.V. 1992. Aquatic insect ecology 1. Biology and habitat. Wiley & Sons. 
11 Bae, M.-J. and Y.-S. Park. 2017. Diversity and distribution of endemic stream Insects on a nationwide scale, South Korea: conservation perspectives. Water 9: 833. 
12 Waters, T.F. 1972. The drift of stream insects. Annual Review of Entomology 17: 253-272.    DOI
13 Weigelhofer, G. and J.A. Waringer. 1994. Allochthonous input of coarse particulate organic matter(CPOM) in a first to fourth order Austrian forest stream. Internationale Revue der gesamten Hydrobiologie und Hydrographie 79: 461-471.    DOI
14 Wijnhoven, S., M.C. van Riel and G. van der Velde. 2003. Exotic and indigenous freshwater gammarid species: physiological tolerance to water temperature in relation to ionic content of the water. Aquatic Ecology 37: 151-158.    DOI
15 Wilson, R.J., D. Gutierrez, J. Gutierrez, D. Martinez, R. Agudo and V.J. Monserrat. 2005. Changes to the elevational limits and extent of species ranges associated with climate change. Ecology Letters 8: 1138-1146.    DOI
16 Winterbourn, M.J., W.L. Chadderton, S.A. Entrekin, J.L. Tank and J.S. Harding. 2007. Distribution and dispersal of adult stream insects in a heterogeneous montane environment. Fundamental and Applied Limnology 168: 127. 
17 Woodward, G., D.M. Perkins and L.E. Brown. 2010. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philosophical Transactions of the Royal Society B: Biological Sciences 365: 2093-2106.    DOI
18 Zografou, K., V. Kati, A. Grill, R.J. Wilson, E. Tzirkalli, L.N. Pamperis and J.M. Halley. 2014. Signals of climate change in butterfly communities in a mediterranean protected area. PLoS One 9: e87245. 
19 Zwick, P. 1980. Plecoptera (Steinfliegen). p. 1-115. Handbuch der Zoologie. de Gruyter. 
20 Bae, M.-J., S.-M. Park, J.-K. Kim, J.-G. Hong and S.H. Ryu. 2020. The relationships between benthic macroinvertebrate and environmental factors in Iancheon and Bukcheon streams, Korea. Korean Journal of Ecology and Environment 53: 22-30.    DOI
21 Barbour, M., J. Gerritsen, G. Griffith, R. Frydenborg, E. McCarron, J. White and M. Bastian. 1996. A framework for biological criteria for Florida streams using benthic macroinvertebrates. Journal of the North American Benthological Society 15: 185-211.    DOI
22 Barnagaud, J.-Y., V. Devictor, F. Jiguet, M. Barbet-Massin, I. Le Viol and F. Archaux. 2012. Relating habitat and climatic niches in birds. PLoS One 7: e32819. 
23 Beals, E.W. 1984. Bray-Curtis ordination: An effective strategy for analysis of multivariate ecological data. p. 1-55. In: Advances in Ecological Research (MacFadyen, A. and E.D. Ford, eds.). Academic Press. 
24 Bonada, N., N. Prat, V.H. Resh and B. Statzner. 2006. Developments in aquatic insect biomonitoring: A comparative analysis of recent approaches. Annual Review of Entomology 51: 495-523.    DOI
25 Burgmer, T., H. Hillebrand and M. Pfenninger. 2007. Effects of climate-driven temperature changes on the diversity of freshwater macroinvertebrates. Oecologia 151: 93-103.    DOI
26 Caceres, M.D. and P. Legendre. 2009. Associations between species and groups of sites: indices and statistical inference. Ecology 90: 3566-3574.    DOI
27 Chung, N., M.-J. Bae, F. Li, Y.-S. Kwon, T.-S. Kwon, J.-S. Kim and Y.-S. Park. 2012. Habitat characteristics and trophic structure of benthic macroinvertebrates in a forested headwater stream. Journal of Asia-Pacific Entomology 15: 495-505.    DOI
28 De Caceres, M., F. Jansen and M.M. De Caceres. 2016. Package 'indicspecies'. indicators 8. 
29 Cibik, J., P. Beracko, I. Krno, T. Lanczos, T. Navara and T. Derka. 2021. The taxonomical and functional diversity of three groups of aquatic insects in rheocrene karst springs are affected by different environmental factors. Limnologica 91:125913. 
30 Cummins, K.W. 1974. Structure and function of stream ecosystems. BioScience 24: 631-641.    DOI
31 De Caceres, M., P. Legendre and M. Moretti. 2010. Improving indicator species analysis by combining groups of sites. Oikos 119: 1674-1684.    DOI
32 Flanagan, P.H., O.P. Jensen, J.W. Morley and M.L. Pinsky. 2019. Response of marine communities to local temperature changes. Ecography 42: 214-224.    DOI
33 Devictor, V., R. Julliard, D. Couvet and F. Jiguet. 2008. Birds are tracking climate warming, but not fast enough. Proceedings of the Royal Society B: Biological Sciences 275: 2743-2748.    DOI
34 Dinno, A. 2017. dunn. test: Dunn's test of multiple comparisons using rank sums. R package version. 
35 Dufrene, M. and P. Legendre. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67: 345-366. 
36 Dunn, O.J. 1964. Multiple comparisons using rank sums. Technometrics 6: 241-252.    DOI
37 Durance, I. and S.J. Ormerod. 2007. Climate change effects on upland stream macroinvertebrates over a 25-year period. Global Change Biology 13: 942-957.    DOI
38 Fochetti, R. and J.M.T. de Figueroa. 2006. Notes on diversity and conservation of the European fauna of Plecoptera (Insecta). Journal of Natural History 40: 2361-2369.    DOI
39 Haubrock, P.J., F. Pilotto and P. Haase. 2020. Do changes in temperature affect EU Water Framework Directive compliant assessment results of central European streams? Environmental Sciences Europe 32: 129. 
40 Heino, J., R. Virkkala and H. Toivonen. 2009. Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biological Reviews 84: 39-54.    DOI
41 Hernandez, O., R.W. Merritt and M.S. Wipfli. 2005. Benthic invertebrate community structure is influenced by forest succession after clearcut logging in southeastern Alaska. Hydrobiologia 533: 45-59.    DOI
42 Houser, J.N., P.J. Mulholland and K.O. Maloney. 2006. Upland disturbance affects headwater stream nutrients and suspended sediments during baseflow and stormflow. Journal of Environmental Quality 35: 352-365.    DOI
43 Jonsson, M., B. Malmqvist and P.-O. Hoffsten. 2001. Leaf litter breakdown rates in boreal streams: does shredder species richness matter? Freshwater Biology 46: 161-171.    DOI
44 Kruskal, W.H. and W.A. Wallis. 1952. Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association 47: 583-621. 
45 Lee, D.-Y., D.-S. Lee, S.-J. Hwang, K.-L. Lee and Y.-S. Park. 2022. Distribution patterns and vulnerability of stoneflies (Plecoptera: Insecta) in South Korean streams with conservation perspectives. Global Ecology and Conservation 34: e02030. 
46 Kwon, T.-S. 2017a. Family composition and temperature in fly assemblages: Community temperature index using family temperature index. Journal of Asia-Pacific Biodiversity 10: 385-389.    DOI
47 Kwon, T.-S. 2017b. Temperature and ant assemblages: Biased values of community temperature index. Journal of Asia-Pacific Entomology 20: 1077-1086.    DOI
48 Lee, D.-S., Y.-S. Bae, B.-K. Byun, S. Lee, J.K. Park and Y.-S. Park. 2019. Occurrence prediction of the citrus flatid planthopper (Metcalfa pruinosa (Say, 1830)) in South Korea using a Random Forest Model. Forests 10: 583. 
49 Lee, D.-Y., D.-S. Lee, C. Park, S.J. Yun, J.-H. Lim and Y.-S. Park. 2021. Comparison of benthic macroinvertebrate communities at two headwater streams located with different temperature regions in South Korea. Korean Journal of Ecology and Environment 54: 87-95.    DOI
50 Lenat, D.R. 1988. Water quality assessment of streams using a qualitative collection method for benthic macroinvertebrates. Journal of the North American Benthological Society 7: 222-233.    DOI
51 Li, F., Q. Cai, W. Jiang and X. Qu. 2012. The response of benthic macroinvertebrate communities to climate change: evidence from subtropical mountain streams in Central China. International Review of Hydrobiology 97: 200-214.    DOI
52 Li, F., N. Chung, M.-J. Bae, Y.-S. Kwon, T.-S. Kwon and Y.- S. Park. 2013. Temperature change and macroinvertebrate biodiversity: assessments of organism vulnerability and potential distributions. Climatic Change 119: 421-434.    DOI
53 Mantua, N., I. Tohver and A. Hamlet. 2010. Climate change impacts on streamflow extremes and summertime stream temperature and their possible consequences for freshwater salmon habitat in Washington State. Climatic Change 102: 187-223.    DOI
54 Li, F., Y.-S. Kwon, M.-J. Bae, N. Chung, T.-S. Kwon and Y.-S. Park. 2014. Potential impacts of global warming on the diversity and distribution of stream insects in South Korea. Conservation Biology 28: 498-508.    DOI
55 Lindstrom, A., M. Green, G. Paulson, H.G. Smith and V. Devictor. 2013. Rapid changes in bird community composition at multiple temporal and spatial scales in response to recent climate change. Ecography 36: 313-322.    DOI
56 Mangadze, T., R.J. Wasserman, P.W. Froneman and T. Dalu. 2019. Macroinvertebrate functional feeding group alterations in response to habitat degradation of headwater Austral streams. Science of The Total Environment 695: 133910. 
57 Meyer, J.L., D.L. Strayer, J.B. Wallace, S.L. Eggert, G.S. Helfman and N.E. Leonard. 2007. The contribution of headwater streams to biodiversity in river networks 1. JAWRA Journal of the American Water Resources Association 43: 86-103.    DOI
58 MOE/NIER. 2008. The survey and evaluation of aquatic ecosystem health in Korea., Incheon, Korea. 
59 Narangarvuu, D., J. Oyunbileg, P.-S. Yang and B. Boldgiv. 2015. Distribution of Ephemeroptera, Plecoptera, and Trichoptera assemblages in relation to environmental variables in headwater streams of Mongolia. Environmental Earth Sciences 73: 835-847.    DOI
60 Niedrist, G.H. and L. Fureder. 2021. Real-time warming of Alpine streams: (re)defining invertebrates̓ temperature preferences. River Research and Applications 37: 283-293.    DOI
61 Nielsen, F. 2016. Hierarchical clustering. p. 195-211. Introduction to HPC with MPI for Data Science. Springer International Publishing, Cham. 
62 Reid, D.J., J.M. Quinn and A.E. Wright-Stow. 2010. Responses of stream macroinvertebrate communities to progressive forest harvesting: Influences of harvest intensity, stream size and riparian buffers. Forest Ecology and Management 260: 1804-1815.    DOI
63 Oksanen, J., F.G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P.R. Minchin, R. O'Hara, G. Simpson and P. Solymos. 2020. vegan: Community ecology package. R package version 2.5-6. 2019. 
64 QGIS Development Team. 2021. QGIS Geographic Information System. Open Source Geospatial Foundation Project. 
65 R Core Team. 2021. R: A language and environment for statistical computing. The R Stats Package. 
66 Resh, V. and J. Jackson. 1993. Rapid assessment approaches in benthic macroinvertebrate biomonitoring studies. Freshwater biomonitoring and benthic macroinvertebrates. Chapman and Hall, New York: 195-233. 
67 Richardson, J., J.A.T. Boubee and D.W. West. 1994. Thermal tolerance and preference of some native New Zealand freshwater fish. New Zealand Journal of Marine and Freshwater Research 28: 399-407.    DOI
68 Richardson, J.S. 2019. Biological diversity in headwater streams. Water 11: 366. 
69 Rostgaard, S. and D. Jacobsen. 2005. Respiration rate of stream insects measured in situ along a large altitude range. Hydrobiologia 549: 79-98.    DOI
70 Roth, T., M. Plattner and V. Amrhein. 2014. Plants, birds and butterflies: Short-term responses of species communities to climate warming vary by taxon and with altitude. PLoS One 9: e82490. 
71 Sabha, I., S.A. Khanday, S.T. Islam and S.U. Bhat. 2020. Longitudinal and temporal assemblage patterns of benthic macroinvertebrates in snow melt stream waters of the Jhelum River Basin of Kashmir Himalaya (India). Ecohydrology 13: e2236.