• 제목/요약/키워드: Oxygen doping

검색결과 193건 처리시간 0.025초

Active Reaction Sites and Oxygen Reduction Kinetics on $La_1_{-x}Sr_xMnO_{3+\delta}$(x=0.1-0.4)/YSZ (Yttria-Stabilized Zirconia) Electrodes for Solid Oxide Fuel Cells

  • Lee, Hee Y.;Cho, Woo S.;오승모
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권6호
    • /
    • pp.661-666
    • /
    • 1998
  • Active reaction sites and electrochemical O2 reduction kinetics on La_{1-x}Sr_xMnO_{3+{\delta}} (x=0.1-0.4)/YSZ (yttria-stabilized zirconia) electrodes are investigated in the temperature range of 700-900 ℃ at $Po_2=10^{-3}$-0.21 atm. Results of the steady-state polarization measurements, which are formulated into the Butler-Volmer formalism to extract transfer coefficient values, lead us to conclude that the two-electron charge transfer step to atomically adsorbed oxygen is rate-limiting. The same conclusion is drawn from the $Po_2$-dependent ac impedance measurements, where the exponent m in the relationship of $I_o$ (exchange current density) ∝ $P_{o_{2}}^m$ is analyzed. Chemical analysis is performed on the quenched Mn perovskites to estimate their oxygen stoichiometry factors (δ) at the operating temperature (700-900 ℃). Here, the observed δ turns out to become smaller as both the Sr-doping contents (x) and the measured temperature increase. A comparison between the 8 values and cathodic activity of Mn perovskites reveals that the cathodic transfer coefficients $({\alpha}_c)$ for oxygen reduction reaction are inversely proportional to δ whereas the anodic ones $({\alpha}_a)$ show the opposite trend, reflecting that the surface oxygen vacancies on Mn perovskites actively participate in the $O_2$ reduction reaction. Among the samples of x= 0.1-0.4, the manganite with x=0.4 exhibits the smallest 8 value (even negative), and consistently this electrode shows the highest ${\alpha}_c$ and the best cathodic activity for the oxygen reduction reaction.

TiO2@carbon Core-Shell Nanostructure Electrodes for Improved Electrochemical Properties in Alkaline Solution

  • Kim, Do-Young;Lee, Young-Woo;Han, Sang-Beom;Ko, A-Ra;Kim, Hyun-Su;Kim, Si-Jin;Oh, Sang-Eun;Park, Kyung-Won
    • 전기화학회지
    • /
    • 제15권2호
    • /
    • pp.90-94
    • /
    • 2012
  • We report nanostructure electrodes with $TiO_2$ as a core and carbon as a shell ($TiO_2$@C) for oxygen reduction in alkaline solution. The structure of core-shell electrodes is characterized by transmission electron microscopy, Raman spectroscopy, X-ray diffraction method, and X-ray photoelectron microscopy. The electrochemical properties of the $TiO_2$@C electrodes are characterized using a potentiostat and compared with those of carbon supported Pt catalyst. In particular, the core-shell electrode with dominant pyridinic-N component exhibits an imporved electrocatalytic activity for oxygen reduction reaction in alkaline solution.

비정질 하프늄인듐징크옥사이드 산화물 반도체의 공정 파워에 따른 트랜지스터의 전기적 특성 연구 (Study on the Electrical Properties of Amorphous HfInZnO TFTs Depending on Sputtering Power)

  • 유동윤;정유진;김도형;주병권;이상렬
    • 한국전기전자재료학회논문지
    • /
    • 제24권8호
    • /
    • pp.674-677
    • /
    • 2011
  • The dependency of sputtering power on the electrical performances in amorphous HIZO-TFT (hafnium-indium-zinc-oxide thin film transistors) has been investigated. The HIZO channel layers were prepared by using radio frequency (RF) magnetron sputtering method with different sputtering power at room temperature. TOF-SIMS (time of flight secondary ion mass spectrometry) was performed to confirm doping of hafnium atom in IZO film. The field effect mobility (${\mu}FE$) increased and threshold voltage ($V_{th}$) shifted to negative direction with increasing sputtering power. This result can be attributed to the high energy particles knocking-out oxygen atoms. As a result, oxygen vacancies generated in HIZO channel layer with increasing sputtering power resulted in negative shift in Vth and increase in on-current.

Nd-Ba-Cu-O 벌크 초전도체의 초전도 특성에 미치는 Ca첨가제의 영향 (Effect of Ca-doping on the superconducting properties of Nd-Ba-Cu-O bulks)

  • 이훈배;위성훈;유상임
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2002년도 학술대회 논문집
    • /
    • pp.346-350
    • /
    • 2002
  • The effect of Ca-doping on the superconducting properties of Nd-Ba-Cu-O bulk superconductors, fabricated by the oxygen-controlled melt growth process, has been systematically investigated. Various c-axis textured bulk samples were grown using precursors with the nominal compositions of N $d_{1.8-x}$C $a_{x}$B $a_{2.4}$C $u_{3.4}$ $O_{y}$ (x = 0.00, 0.02, 0.05, 0.10, 0.15) in a reduced oxygen atmosphere of 1% $O_2$ in Ar. Magnetization measurements revealed that the critical temperatures( $T_{c}$) were almost linearly depressed from 95K to 86K with increasing the Ca dopant from x = 0.0 to 0.15, respectively, and thus critical current densities( $J_{c}$) at 77K and for H//c-axis of specimens were gradually degraded with increasing x. Compositional analyses revealed that although the amounts of the Ca dopant both in NdB $a_2$C $u_3$ $O_{y}$(Nd123) and N $d_4$B $a_2$C $u_2$ $O_{10}$(Nd422) were increased with increasing x, only less than half of the initial Ca compositions were detected in melt-grown Ca-doped Nd-Ba-Cu-O bulk crystals. The supression of $T_{c}$ is attributed to an increased Nd substitution for the Ba site in the Nd123 superconducting matrix with increasing the amount of the Ca dopant.t.opant.t.t.t.t.t.

  • PDF

MOD-TFA공정에 의한 YBCO박막 제조 시 cerium첨가효과에 관한 연구 (Effect of Cerium Doping on Superconducting Properties of YBCO Film Prepared by TFA-MOD Method)

  • 이금영;권연경;김병주;안지현;이종범;김호진;이희균;홍계원;유재무;이형철
    • Progress in Superconductivity
    • /
    • 제8권1호
    • /
    • pp.87-92
    • /
    • 2006
  • The effects of Ba and Ce addition has been investigated in YBCO prepared by trifluoroacetate(TFA) metalorganic depostition(MOD) method. Precursor solutions with cation ratios of Y:Ba:Cu:Ce=1:2+x:3:x(x=0, 0.05, 0.1 and 1.5) have been prepared by adding an excess amount of cerium and barium. Coated film was calcined at lower temperature under a moisture-containing oxygen atmosphere. Superconducting YBCO films have been obtained by performing conversion heat treatment at temperature of $780{\sim}810^{\circ}C$ under a moisture-containing Ar(1,000 ppm oxygen) atmosphere. It has been shown that the critical current($I_c$) of YBCO film was degraded by doping of Ba and Ce atoms. But $I_c$ was increased as the amount of doped Ba and Ce content increased from 5% to 15 %. It was observed that there was little increase of a flux pinning force with Ba and Ce addition in YBCO film prepared by TFA-MOD process.

  • PDF

DLC 박막의 전기전도성, 투과율 및 가스베리어 특성에 관한 연구 (Study on Electrical Conductivity, Transmittance and Gas Barrier Properties of DLC Thin Films)

  • 박새봄;김치환;김태규
    • 열처리공학회지
    • /
    • 제31권4호
    • /
    • pp.187-193
    • /
    • 2018
  • In this study, the electrical conductivity, transmittance and gas barrier properties of diamond-like carbon (DLC) thin films were studied. DLC is an insulator, and has transmittance and oxygen gas barrier properties varying depending on the thickness of the thin film. Recently, many researchers have been trying to apply DLC properties to specific industrial conditions. The DLC thin films were deposited by PECVD (Plasma Enhanced Chemical Vapor Deposition) process. The doping gas was used for the DLC film to have electrical conductivity, and the optimum conditions of transmittance and gas barrier properties were established by adjusting the gas ratio and DLC thickness. In order to improve the electrical conductivity of the DLC thin film, $N_2$ doping gas was used for $CH_4$ or $C_2H_2$ gas. Then, a heat treatment process was performed for 30 minutes in a box furnace set at $200^{\circ}C$. The lowest sheet resistance value of the DLC film was found to be $18.11k{\Omega}/cm^2$. On the other hand, the maximum transmittance of the DLC film deposited on the PET substrate was 98.8%, and the minimum oxygen transmission rate (OTR) of the DLC film of $C_2H_2$ gas was 0.83.

Effects of Mg Suppressor Layer on the InZnSnO Thin-Film Transistors

  • Song, Chang-Woo;Kim, Kyung-Hyun;Yang, Ji-Woong;Kim, Dae-Hwan;Choi, Yong-Jin;Hong, Chan-Hwa;Shin, Jae-Heon;Kwon, Hyuck-In;Song, Sang-Hun;Cheong, Woo-Seok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제16권2호
    • /
    • pp.198-203
    • /
    • 2016
  • We investigate the effects of magnesium (Mg) suppressor layer on the electrical performances and stabilities of amorphous indium-zinc-tin-oxide (a-ITZO) thin-film transistors (TFTs). Compared to the ITZO TFT without a Mg suppressor layer, the ITZO:Mg TFT exhibits slightly smaller field-effect mobility and much reduced subthreshold slope. The ITZO:Mg TFT shows improved electrical stabilities compared to the ITZO TFT under both positive-bias and negative-bias-illumination stresses. From the X-ray photoelectron spectroscopy O1s spectra with fitted curves for ITZO and ITZO:Mg films, we observe that Mg doping contributes to an enhancement of the oxygen bond without oxygen vacancy and a reduction of the oxygen bonds with oxygen vacancies. This result shows that the Mg can be an effective suppressor in a-ITZO TFTs.

Effect of Mn-addition on Catalytic Activity of $Mn/In_2O_3$ in Methane Activation

  • Park, Jong Sik;Jun Jong Ho;Kim Yong Rok;Lee Sung Han
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권12호
    • /
    • pp.1058-1064
    • /
    • 1994
  • Mn/In$_2O_3$ systems with a variety of Mn mol${\%}$ were prepared to investigate the effect of Mn-addition on the catalytic activity of Mn/In$_2O_3$ in the oxidative coupling of methane. The oxidative coupling of methane was examined on pure In$_2O_3$ and Mn/In$_2O_3$ catalysts by cofeeding gaseous methane and oxygen under atmospheric pressure between 650 and 830 $^{\circ}C$. Although pure In$_2O_3$ showed no C$_2$ selectivity, both the C$_2$ yield and the C$_2$ selectivity were increased by Mn-doping. The 5.1 mol${\%}$ Mn-doped In$_2O_3$ catalyst showed the best C$_2$ yield of 2.6${\%}$ with a selectivity of 19.1${\%}$. The electrical conductivities of pure and Mn-doped In$_2O_3$ systems were measured in the temperature range of 25 to 100 $^{\circ}C$ at PO$_2$'S of 1 ${\times}$ 10$^{-7}$ to 1 ${\times}$ 10 $^{-1}$ atm. The electrical conductivities were decreased with increasing Mn mol${\%}$ and PO$_2$, indicating the specimens to be n-type semiconductors. Electrons serve as the carriers and manganese can act as an electron acceptor in the specimens. Manganese ions doped in In$_2O_3$ inhibit the ionization of neutral interstitial indium or the transfer of lattice indium to interstitial sites and increase the formation of oxygen vacancy, giving rise to the increase of the concentration of active oxygen ion on the surface. It is suggested that the active oxygen species adsorbed on oxygen vacancies are responsible for the activation of methane.

비정질 및 단결정 실리콘에서 10~50 keV 에너지로 주입된 안티몬 이온의 분포와 열적인 거동에 따른 연구 (A Study on Implanted and Annealed Antimony Profiles in Amorphous and Single Crystalline Silicon Using 10~50 keV Energy Bombardment)

  • 정원채
    • 한국전기전자재료학회논문지
    • /
    • 제28권11호
    • /
    • pp.683-689
    • /
    • 2015
  • For the formation of $N^+$ doping, the antimony ions are mainly used for the fabrication of a BJT (bipolar junction transistor), CMOS (complementary metal oxide semiconductor), FET (field effect transistor) and BiCMOS (bipolar and complementary metal oxide semiconductor) process integration. Antimony is a heavy element and has relatively a low diffusion coefficient in silicon. Therefore, antimony is preferred as a candidate of ultra shallow junction for n type doping instead of arsenic implantation. Three-dimensional (3D) profiles of antimony are also compared one another from different tilt angles and incident energies under same dimensional conditions. The diffusion effect of antimony showed ORD (oxygen retarded diffusion) after thermal oxidation process. The interfacial effect of a $SiO_2/Si$ is influenced antimony diffusion and showed segregation effects during the oxidation process. The surface sputtering effect of antimony must be considered due to its heavy mass in the case of low energy and high dose conditions. The range of antimony implanted in amorphous and crystalline silicon are compared each other and its data and profiles also showed and explained after thermal annealing under inert $N_2$ gas and dry oxidation.

ZnO양자점 기반 센서의 초고감도 수소 검지 특성 (Ultra Sensitive Detection of H2 in ZnO QD-based Sensors)

  • 이현숙;김원경;이우영
    • 센서학회지
    • /
    • 제29권2호
    • /
    • pp.105-111
    • /
    • 2020
  • Interest and demand for hydrogen sensors are increasing in the field of H2 leakage detection during storage/transport/use and detection of H2 dissolved in transformer oil for safety issues as well as in the field of breath analysis for non-invasively diagnosing a number of disease states for a healthy life. In this study, various ZnO-based sensors were synthesized by controlling the reduction in crystallite size, decoration of Pt nanoparticles, doping of electron donating atoms, and doping of various atoms with different ionic radii. The sensing response of the various prepared ZnO-based nanoparticles and quantum dots (QDs) for 10 ppm H2 was investigated. Among the samples, the smallest-sized (3.5 nm) In3+-doped ZnO QDs showed the best sensing response, which is superior to those in previously reported hydrogen sensors based on semiconducting metal oxides. The higher sensing response of In-doped ZnO QDs is attributed to the synergic effects of the increased number of oxygen vacancies, higher optical band gap, and larger specific surface area.