Browse > Article
http://dx.doi.org/10.4313/JKEM.2015.28.11.683

A Study on Implanted and Annealed Antimony Profiles in Amorphous and Single Crystalline Silicon Using 10~50 keV Energy Bombardment  

Jung, Won-Chae (Department of Electronic Engineering, Kyonggi University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.28, no.11, 2015 , pp. 683-689 More about this Journal
Abstract
For the formation of $N^+$ doping, the antimony ions are mainly used for the fabrication of a BJT (bipolar junction transistor), CMOS (complementary metal oxide semiconductor), FET (field effect transistor) and BiCMOS (bipolar and complementary metal oxide semiconductor) process integration. Antimony is a heavy element and has relatively a low diffusion coefficient in silicon. Therefore, antimony is preferred as a candidate of ultra shallow junction for n type doping instead of arsenic implantation. Three-dimensional (3D) profiles of antimony are also compared one another from different tilt angles and incident energies under same dimensional conditions. The diffusion effect of antimony showed ORD (oxygen retarded diffusion) after thermal oxidation process. The interfacial effect of a $SiO_2/Si$ is influenced antimony diffusion and showed segregation effects during the oxidation process. The surface sputtering effect of antimony must be considered due to its heavy mass in the case of low energy and high dose conditions. The range of antimony implanted in amorphous and crystalline silicon are compared each other and its data and profiles also showed and explained after thermal annealing under inert $N_2$ gas and dry oxidation.
Keywords
Antimony implantation; ORD; Diffusion; Sputtering; Computer simulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Alzanki, K. M. Kandil, N. Bennett, B. J. Sealy, M. R. Alenezi, A. Almeshal, M. Jafar, and A. Ghoneim, SOJ Mat. Sci. Eng., 2, 1 (2014).
2 N. S. Benett, N. E. B. Cowern, A. J. Smith, R. M. Gwilliam, B, J. Sealy, L. O'Reilly, P. J. McNally, G. Cooke, and H. Kheyrandish, Appl. Phys. Lett., 89, 182122 (2006). [DOI: http://dx.doi.org/10.1063/1.2382741]   DOI
3 R. Low, B. J. Sealy, and R. Gwilliam, J. Appl. Phys., 95, 5471 (2004). [DOI: http://dx.doi.org/10.1063/1.1702096]   DOI
4 J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).
5 J. F. Ziegler, SRIM 2013 Manual, http://www.srim.org/.
6 W. Moller and W. Eckstein, Nucl. Insrum. Methods B, 2, 814 (1984). [DOI: http://dx.doi.org/10.1016/0168-583X(84)90321-5]   DOI
7 W. Eckstein, Computer Simulation of Ion-Solid Interactions (Springer, Berlin 1991). [DOI: http://dx.doi.org/10.1007/978-3-642-73513-4]   DOI
8 H. Ryssel, J. Lorenz, and W. Kreuger, Nucl. Insrum. Methods, B19, 45, (1987). [DOI: http://dx.doi.org/10.1016/S0168-583X(87)80012-5]   DOI
9 User's Guide, ICECREM Manual (1996).
10 C. Park, K. M. Klein, and A.L.F. Tasch, Solid State Electonics, 33, 645 (1990). [DOI: http://dx.doi.org/10.1016/0038-1101(90)90176-F]   DOI
11 C. Park, K. M. Klein, and A.L.F. Tasch, IEEE Trans. Electron Dev., 39, 1614 (1992). [DOI: http://dx.doi.org/10.1109/16.141226]   DOI