• 제목/요약/키워드: Oxygen doping

검색결과 193건 처리시간 0.026초

산화 아연에서의 질소 용해도에 대한 알루미늄의 효과 : 밀도 범함수 이론 (Effect of Aluminum on Nitrogen Solubility in Zinc Oxide: Density Functional Theory)

  • 김대희;이가원;김영철
    • 한국재료학회지
    • /
    • 제21권12호
    • /
    • pp.639-643
    • /
    • 2011
  • Zinc oxide as an optoelectronic device material was studied to utilize its wide band gap of 3.37 eV and high exciton biding energy of 60 meV. Using anti-site nitrogen to generate p-type zinc oxide has shown a deep acceptor level and low solubility. To increase the nitrogen solubility in zinc oxide, group 13 elements (aluminum, gallium, and indium) was co-added to nitrogen. The effect of aluminum on nitrogen solubility in a $3{\times}3{\times}2$ zinc oxide super cell containing 72 atoms was investigated using density functional theory with hybrid functionals of Heyd, Scuseria, and Ernzerhof (HSE). Aluminum and nitrogen were substituted for zinc and oxygen sites in the super cell, respectively. The band gap of the undoped super cell was calculated to be 3.36 eV from the density of states, and was in good agreement with the experimentally obtained value. Formation energies of a nitrogen molecule and nitric oxide in the zinc oxide super cell in zinc-rich conditions were lower than those in oxygen-rich conditions. When the number of nitrogen molecules near the aluminum increased from one to four in the super cell, their formation energies decreased to approach the valence band maximum to some degree. However, the acceptor level of nitrogen in zinc oxide with the co-incorporation of aluminum was still deep.

A Review of Strategies to Improve the Stability of Carbon-supported PtNi Octahedral for Cathode Electrocatalysts in Polymer Electrolyte Membrane Fuel Cells

  • In Gyeom Kim;Sung Jong Yoo;Jin Young Kim;Hyun S. Park;So Young Lee;Bora Seo;Kwan-Young Lee;Jong Hyun Jang;Hee-Young Park
    • Journal of Electrochemical Science and Technology
    • /
    • 제15권1호
    • /
    • pp.96-110
    • /
    • 2024
  • Polymer electrolyte membrane fuel cells (PEMFCs) are green energy conversion devices, for which commercial markets have been established, owing to their application in fuel cell vehicles (FCVs). Development of cathode electrocatalysts, replacing commercial Pt/C, plays a crucial role in factors such as cost reduction, high performance, and durability in FCVs. PtNi octahedral catalysts are promising for oxygen reduction reactions owing to their significantly higher mass activity (10-15 times) than that of Pt/C; however, their application in membrane electrode assemblies (MEAs) is challenged by their low stability. To overcome this durability issue, various approaches, such as third-metal doping, composition control, halide treatment, formation of a Pt layer, annealing treatment, and size control, have been explored and have shown promising improvements in stability in rotating disk electrode (RDE) testing. In this review, we aimed to compare the features of each strategy in terms of enhancing stability by introducing a stability improvement factor for a direct and reasonable comparison. The limitations of each strategy for enhancing stability of PtNi octahedral are also described. This review can serve as a valuable guide for the development of strategies to enhance the durability of octahedral PtNi.

Infrared Spectroscopic Evidences for the Superconductivity of $La_2CuO_4$-related Compounds: A Superconductivity Probe

  • 박정철;조선욱;정종학;정기호
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권10호
    • /
    • pp.1041-1043
    • /
    • 2000
  • We present the effects of temperature (between 10 K and 298 K) and of hole concentration on the frequency and intensity of characteristic phonons in polycrystalline $La_2CuO_4-related$ compounds using FT-IR spectros-copy. The influences of the concentration of carrier doped on the phonon modes are prominent in the IR spectra of $La_2CuO_4-related$ compounds. For $La_2-xSrxCuO_4({\chi}=$ 0.00, 0.03, 0.07, 0.10, and 0.15) and electrochemically (or chemically) oxidized $La_2CuO_4$, the intensities of the transverse oxygen mode around 680cm $-^1$ which cor-responds mainly to Cu-O(1) stretching vibration in the basal plane of CuO6 octahedron, are decreased and dis-appeared depending on the Sr-substitution rate and the amount of excess oxygen, while the longitudinal oxygen mode around 510 cm $-^1$ corresponding to the Cu-O(2) stretching in the basal plane of CuO6 octahedron are near-ly invariable. In particular, after two cycles of cooling-heating between 10 K and 298 K for these sample, the phonons around 680 cm $-^1$ are blue shif 13-15 cm $-^1$, while the phonons around 510 cm $-^1$ are nearly constant. The introduction of the charge carrier by doping would give rise to the small contraction of CuO6 oc-tahedron as Cu $^3+$ requires a smaller site than Cu $^2+$, which results in the shortening of the Cu-O(1) bond length and Cu-O(2) bond length with the increased La-O(2) bond length. These results in the frequency shift of the characteristic phonons. The IR spectra of $La_2Li0.5Cu0.5O_4$ which exhibits an insulator behavior despite the $Cu^3+$ of nearly 100%, corroborate our IR interpretations. The mode around 710 cm $-^1$ corresponding to Cu-O(1) stretching vibration is still strongly remained even at low temperature (10 K). Thus, we conclude that the con-duction electrons formed within $CuO_2$ planes of $La_2CuO_4-related$ superconductors screen more effectively the transverse oxygen breathing mode around 680 $cm-^1$ depending on the concentration of the doped charge carrier in $La_2CuO_4-related$ compounds, which might use as a superconductivity probe.

PLD법을 이용한 Buffer Layer 증착온도에 따른 As-doped ZnO 박막의 특성 (Characteristics of As-doped ZnO thin films with various buffer layer temperatures prepared by PLD method)

  • 이홍찬;심광보;오영제
    • 센서학회지
    • /
    • 제15권2호
    • /
    • pp.84-89
    • /
    • 2006
  • Highly concentrated p-type ZnO thin films can be obtained by doping of N, P and As elements. In this study, undoped ZnO buffer layers were prepared on a (0001) sapphire substrate by a ultra high vaccum pulsed laser deposition(UHV-PLD) method. ZnO buffer layers were deposited with various deposition temperature($400{\sim}700^{\circ}C$) at 350 mtorr of oxygen working pressure. Arsenic doped(1 wt%) ZnO thin films were deposited on the ZnO buffer layers by UHV-PLD. Crystallinity of the samples were evaluated by X-ray diffractometer and scanning electron microscopy. Optical, electrical properties of the ZnO thin films were estimated by photoluminescence(PL) and Hall measurements. The optimal condition of the undoped ZnO buffer layer for the deposition of As-doped ZnO thin films was at $600^{\circ}C$ of deposition temperature.

PNN-PZ-PT 세라믹스의 소결 거동에 미치는 Cd-doping 효과 (The Effect of Cd-Dopping on Sintering behavior of PNN-PT-PZ Ceramics)

  • 조정호;김호기
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1995년도 추계학술대회 논문집
    • /
    • pp.217-220
    • /
    • 1995
  • By substituting Cd$\^$2+/ into both A-site and B-site in PNN-PZ-PT ternary perovskite material, it is possible to determine the effects of the substitution site of Cd$\^$2+/ on sintering behavior. Sintering was performed in the temperature range from 1000$^{\circ}C$ to 1300$^{\circ}C$. The substitution site of Cd$\^$2+/ is identified by XPS spectra. Although Cd$\^$2+/ is substituted into both A-site and B-site in PNN-PZ-PT, Cd$\^$2+/ prefers A-site to B-site. The density is influenced by substitution site of Cd$\^$2+/. If Cd$\^$2+/ replaces Pv$\^$2+/, weight gain is observed during sinterig process. On the contrary, if Cd$\^$2+/ replaces Ni$\^$2+/, weight loss is promoted during sintering. From these weight changes, it is believed that Cd$\^$2+/ changes the bonding strength between B-site cation and oxygen of octahedron in perovskite structure. The changes of lattice parameters as a function of Cd$\^$2+/ content were consistent with those of the bonding strength. The densities of A-site-doped compositions were higher than those of B-site-doped composition.

  • PDF

Verneuil법에 의한 $TiO_2$를 첨가한 Sapphire 단결정 성장과 결함에 관한 연구 ($TiO_2$ Doped Sapphire Single Crystal Growth by Verneuil Method and Study for Defects)

  • 조현;최종건;전병식;오근호;박한수
    • 한국세라믹학회지
    • /
    • 제31권12호
    • /
    • pp.1423-1428
    • /
    • 1994
  • TiO2 doped sapphire single crystals were grown by Verneuil method. The doping amount of TiO2 to Al2O3 were varied 0.1, 0.2, 0.3 wt% respectively. The grown crystals have reddish color and somewhat transparent. Optimum growth condition was established by changing growth rate and gas flow ratio. Growth condition are as follows; The flow rate range of oxygen ws 5.0~7.3 ι/min and that of hydrogen was 16~25ι/min and average growth rate was 6~8mm/hr. The basic cause of color appearence and defects in crystal were studied.

  • PDF

$BaTiO_3$계 Ceramic 반도체의 PTC 특성의 첨가물영향 (The effects of additions on the PTC characteristics of semiducting $BaTiO_3$ ceramics.)

  • 한성진;김상영;강희복;성영권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 하계종합학술대회 논문집
    • /
    • pp.310-313
    • /
    • 1989
  • The semiconducting bodies were prepared by doping the bariume titanate with $Sb_2O_3,Nb_2O_5$and by subsequent sintering in air. The sintered bodies were annealed between $1100^{\circ}C$ and $1250^{\circ}C$ for 30 minutes to 2 hours in air. The resistivity was measured as a function of temperature from $20^{\circ}C$ to $240^{\circ}C$. The anomalous effect in resistivity occurred all of the $Nb_2O_5$ and $Sb_2O_3$doped barium titanate specimens, which were sintered in air atmosphere, and the most effective PTC effect occurred through 1 hour of sintering time at $1350^{\circ}C$ and 30 minute of annealing time at $1200^{\circ}C$. The resistivity - temperature characteristics seem to be intimately related to oxygen adsorption at grain boundaries and also to the thickness of insulating layers formed at grain boundaries during heat treatment.

  • PDF

Phase shifters 응용을 위한 Sol-gel 법으로 제작된 BST 박막의 Ce 첨가에 따른 구조적, 유전적 특성 (Dielectric and Structural of BST Thin Films with Ce-doped prepared by Sol-gel method for Phase shifters)

  • 김동표;김창일
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.776-779
    • /
    • 2004
  • The dielectric and electrical characteristics of Ce doped (Ba0.6Sr0.4)TiO3 (BST) thin films were investigated as a function of Ce content. Both atomic force microscopy (AFM) and x-ray diffraction (XRD) analysis showed that increasing the Ce doping ratio causes the decrease in grain size while the surface remains smooth and crack-free. The dielectric properties of the Ce doped BST films were found to be strongly dependent on the Ce contents. The dielectric constant and dielectric loss of the BST films decreased with increasing Ce content. However, it was also found that, compared with undoped films, the increase of Cecontent improves the leakage-current characteristics. The improvement of the electrical properties of Ce-doped BST films may be related to the decrease in the concentration of oxygen vacancies. The figure of merit (FOM) reached the maximum value of 48.9 at the 1 mol % of Cedoping. The dielectric constant, loss factor, and tunability of the 1 mol% Ce doped Ba0.6Sr0.4TiO3 thin films were 320, 0.011, and 46.3%, respectively.

  • PDF

(Bi,Nd)(Fe,Ti)$O_3$ 다강체 세라믹 및 박막의 상변화 거동 (Phase Evolution Behavior of Multiferroic (Bi,Nd)(Fe,Ti)$O_3$ Ceramics and Thin Films)

  • 김경만;양판;이재열;이희영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.231-232
    • /
    • 2008
  • The coupling between electric, magnetic, and structural order parameters results in the so-called multiferroics, which possess ferroelectricity, ferromagnetism, and/or ferroelasticity. The simultaneous ferroelectricity and ferromagnetism (magnetoelectricity) allow potential applications in information storage, spintronics, and in magnetic or electric field sensors. Perovskite compound $BiFeO_3$ (BFO) is antiferromagnetic below Neel temperature of 647K and ferroelectric with a high Curie temperature of 1043K. It exhibits weak magnetism at room temperature(RT) due to the residual moment from a canted spin structure. It is likely that non-stoichiometry and second-phase formation are the factors which cause leakage in BFO. It has been suggested that oxygen non-stoichiometry leads to valence fluctuations of Fe ions in BFO, resulting in high conductivity. To reduce the large leakage current of BFO, one attempt is fabricating donor doped BFO compounds and thin films. We report here the successful fabrication of the Nd, Ti co-doped $BiFeO_3$ ceramics and thin films by pulsed laser deposition technique.

  • PDF

Ultraviolet Photoelectron spectroscopy Study of Colossal Magnetoresistive $La_{0.7-x}P_rxCa_{0.3}MnO_3$

  • Lee, Chang-Won;Hoon Koh;Noh, Han-Jin;Park, Jong-Hyurk;Kim, Hyung-Do;Moonsup Han;Oh, Se-Jung;Eom, dai-Jin;Noh, Tae-Won
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1999년도 제17회 학술발표회 논문개요집
    • /
    • pp.172-172
    • /
    • 1999
  • Perovskite Manganese Oxide has been intensively investigated since the discovery of the colossal magnetoresistive(CMR) effect. In this paper, we studied the effect of temperature dependence and various doping dependence of rare earth site ions of La0.7-xPrxCa0.3MnO3 series using Ultraviolet Photoelectron spectroscopy(UPS). They show unusual temperature dependent features and the doped rare earth ions seem to affect the electron-phonon coupling strongly. We found clear evidence of metal-insulator transition from the spectral density at the Fermi level. but the transition temperature is lower than that deduced from transport measurements. Also we found that the spectral features change as time goes on implying that the surface of these materials is somewhat unstable in the vacuum. We can conclude from these results that the surface oxygen atoms correlated to the hopping electrons can escape from the material into the vacuum and that the surface state of these material is different from the bulk state.

  • PDF