• 제목/요약/키워드: Oxygen Plasma treatment

Search Result 331, Processing Time 0.032 seconds

Analysis of Chemical and Morphological Changes of Phenol Formaldehyde-based Photoresist Surface caused by O2 Plasma

  • Shutov, D.A.;Kang, Seung-Youl;Baek, Kyu-Ha;Suh, Kyung-Soo;Min, Nam-Ki;Kwon, Kwang-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.5
    • /
    • pp.211-214
    • /
    • 2007
  • Chemical and morphological changes of phenol formaldehyde-based photoresist after $O_2$ radiofrequency(RF) plasma treatment depending on exposure time and source power were investigated. It was found that etch rate of photoresist sharply increased after discharge turn on and reached a limit with increase in plasma exposure time. Contact angle measurements and X-ray photoelectron spectroscopy(XPS) analysis showed that the surface chemical structure become nearly constant after 15 sec of the treatment. Atomic force microprobe(AFM) measurements were shown that surface roughness was increased with plasma exposure time.

A Study on the UV Degradation Characteristics of FRP by Plasma Surface Modification (플라즈마 표면개질에 따른 FRP의 자외선 열화 특성에 관한 연구)

  • Hwang, Myung-Hwan;Lim, Kyung-Bum
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.3
    • /
    • pp.122-126
    • /
    • 2006
  • In this study, composite materials were put to dry interfacial treatment by use of plasma technology It has been presented that the optimum parameters for the best wettability of the samples at the time of generation of plasma were oxygen atmosphere, 0.1 Torr of system pressure, 100 W of discharge power, and 3 minutes of discharge time. The decrease in surface potential of charged samples by corona discharge indicates that the amount of accumulated electrical charges reduces and the charges that have been injected lessen rapidly when the duration of UV irradiation increases. The surface resistivity and the tensile strength of plasma treated samples, a longer UV irradiation time resulted in decreased insulation.

A Study of Optical properties of Al6061 By plasma electrolytic oxidation surface treatment (플라즈마 전해 산화 표면처리 된 Al6061 소재의 광학적 특성연구)

  • Yu, Jae-In;Yun, J-S;Yun, Jae-Gon;Choi, Soon-Don;Yu, Jae-Yong;Jang, Ho-Kyeoung;Kim, Ki-Hong
    • Laser Solutions
    • /
    • v.17 no.2
    • /
    • pp.1-4
    • /
    • 2014
  • With the PEO(Plasma electrolytic oxidation) surface treatment, the oxide film of aluminum alloy is growing in a short time. The reflectance measurement to find the oxygen atoms in the oxide could be investigated. In order to form a thicker oxide film, the PEO surface treatment should be uniformly controlled in processing time.

  • PDF

Surface Treatment of Transparent Conductive films and Polymer Materials (투명전도막 및 고분자 재료의 표면처리)

  • Lee, Bong-Ju;Lee, Hyun-Kyu;Chung, Soo-Bok;Lee, Kyung-Sub;Kim, Hyung-Kon;Chung, Hyoan-Ki
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.15-17
    • /
    • 2001
  • A new possibility of our atmospheric cold plasma torch has been examined on the surface treatment of an air-exposed vulcanized rubber compound. The plasma treatment effect was evaluated by the bondability with another rubber compound using a polyurethane adhesive.

  • PDF

The Effect of Ion-Beam Treatment on TiO2 Coatings Deposited on Polycarbonate Substrates

  • Park, Jung-Min;Lee, Jai-Yeoul;Lee, Hee-Young;Park, Jae-Bum
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.6
    • /
    • pp.266-270
    • /
    • 2010
  • The effect of an Ar plasma treatment on polycarbonate substrates was investigated using $TiO_2$ coatings produced by reactive ion-beam assisted sputtering. The typical pressure used during sputtering was about $10^{-4}$ Torr. After the Ar plasma treatment, the contact angle of a water droplet was reduced from $88^{\circ}$ to $52^{\circ}$ and then further decreased to $12^{\circ}$ with the addition of oxygen into the chamber. The surface of the polycarbonate substrate hanged from hydrophobic to hydrophilic with these treatments and revealed its changing nano-scale roughness. The $TiO_2$ films on the treated surface showed various colors and periodic ordering dependant on the film thickness due to optical interference.

Effects of Hydrogen Injection by In-Situ and Plasma Post-Treatment on Properties of a ZnO Channel Layer in Transparent Thin Film Transistors (증착시 및 플라즈마 후처리에 의한 수소 주입이 투명 박막 트랜지스터에서 산화아연 채널층의 물성에 미치는 영향)

  • Bang, Jung-Hwan;Kim, Won;Uhm, Hyun-Seok;Park, Jin-Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.1
    • /
    • pp.35-40
    • /
    • 2010
  • We have investigated the effects of hydrogen injection via in-situ gas addition ($O_2$, $H_2$, or $O_2$ + $H_2$ gas) and plasma post-treatment (Ar or Ar + H plasma) on material properties of ZnO that is considered to be as a channel layer in transparent thin film transistors. The variations in the electrical resistivity, optical transmittance and bandgap energy, and crystal quality of ZnO thin films were characterized in terms of the methods and conditions used in hydrogen injection. The resistivity was significantly decreased by injection of hydrogen; approximately $10^6\;{\Omega}cm$ for as-grown, $1.2\;{\times}\;10^2\;{\Omega}cm$ for in-situ with $O_2/H_2\;=\;2/3$ addition, and $0.1\;{\Omega}cm$ after Ar + H plasma treatment of 90 min. The average transmittance of ZnO films measured at a wavelength of 400-700 nm was gradually increased by increasing the post-treatment time in Ar + H plasma. The optical bandgap energy of ZnO films was almost monotonically increased by decreasing the $O_2/H_2$ ratio in in-situ gas addition or by increasing the post-treatment time in Ar + H plasma, while the post-treatment using Ar plasma hardly affected the bandgap energy. The role of hydrogen in ZnO was discussed by considering the creation and annihilation of oxygen vacancies as well as the formation of shallow donors by hydrogen.

Effects of Color Depth on Wool and Silk Fabrics Treated Sputter Etching (Sputter etching에 의한 양모, 견직물의 농색효과)

  • Cho, Hwan;Gu, Kang
    • Textile Coloration and Finishing
    • /
    • v.6 no.3
    • /
    • pp.44-51
    • /
    • 1994
  • Wool and silk fabrics dyed with C.l. Acid Black 155 were subjected to sputter etching and exposed to a low temperature argon plasma. Color depth of shade of the fabrics increased considerably, but sputter etching was more effectively than argon low temperature plasma treatment. And measured for any significant chemical modification by ESCA (XPS). Sputter etching and argon low temperature plasma treatments incorporated oxygen atoms into the surface.

  • PDF

The Effect of Oxygen Low Temperature Plasma Treatment on the Wettability of Polypropylene Fabrics (폴리프로필렌 직물의 젖음성에 관한 연구)

  • Kwon, Young-Ah
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.307-308
    • /
    • 2003
  • Improved wettability and dyeability of Polypropylene(PP) fabrics were obtained using glow discharge plasma by grafting nitrogen-containing active groups on the surface. Few studies of glow discharge plasma on PP fabrics exist. The objective of this study was to give a fabric a good affinity for water. (omitted)

  • PDF

Structural Properties of Plasma-treated Polymer Films and Their Applications

  • Lee, Jin Young;Lee, Geon Joon;Kim, In Tae;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.522-522
    • /
    • 2013
  • Plasma can be used to various applications such as sterilization, inactivation/removal of microorganisms, wound healing, tooth bleaching, cancer treatment, surface modification and plasma polymerization. In this research, we studied the effect of plasma irradiation on the structural, optical, and biological properties of the polymer films. Several polymers were synthesized and then deposited on the glass substrates. The polymer films were treated by oxygen and nitrogen plasmas. Plasma-treated films were investigated by contact angle, infrared absorption spectroscopy, cathodoluminescence spectroscopy, and scanning electron microscopy. Functional materials were prepared on plasma-treated surface, and their performances were investigated using various techniques. Next, we discuss relationship between the performance of functional materials and the structural properties of plasma-treated polymer films.

  • PDF

Surface Characterization of the d-PMMA Thin Films Treated by Oxygen Plasma (산소 플라즈마 처리된 d-PMMA 박막의 표면특성 분석)

  • Kim, Soong-Hoon;Choi, Dong-Jin;Lee, Jeong-Su;Choi, Ho-Suk
    • Polymer(Korea)
    • /
    • v.33 no.3
    • /
    • pp.263-267
    • /
    • 2009
  • In order to improve the hydrophilic property on the surface of d-PMMA(deuterated poly-(methyl methacrylate)) film, it was exposed to oxygen plasma, All experimental conditions were same except to plasma exposure time that was varied from 0 to 180 s, The effects according to the exposure time were identified using contact angles, X-ray reflectometer(XRR), neutron reflectometer(NR), and X-ray photoelectron spectroscopy(XPS). By confirming that as the exposure time increases, water contact angle decreases while the composition of oxygen increases, it was confirmed that the composition of oxygen has a huge influence on improving the hydrophilic property. The physical characters as a function of the exposure time were investigated by the XRR. By analyzing complementally the results of the XRR, NR, and XPS, more detailed chemical bonding conditions were studied by obtaining not only composition of the carbon and oxygen but that of the hydrogen.