• 제목/요약/키워드: Oxide substrates

검색결과 668건 처리시간 0.032초

Facile and effective antibacterial coatings on various oxide substrates

  • Kim, Dae Wook;Moon, Jeong-Mi;Park, Soyoung;Choi, Joon Sig;Cho, Woo Kyung
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.42-47
    • /
    • 2018
  • This work reports a facile and effective antibacterial coating for oxide substrates. As a coating material, a random copolymer, abbreviated as poly(TMSMA-r-PEGMA), was synthesized by radical polymerization of 3-(trimethoxysilyl)propyl methacrylate (TMSMA) and poly(ethylene glycol) methyl ether methacrylate (PEGMA). Polymeric self-assembled monolayers of poly(TMSMA-r-PEGMA) were formed on various inorganic oxide substrates, including silicon oxide, titanium dioxide, aluminum oxide, and glass, via the simple dip-coating process. The polymer-coated substrates were characterized by ellipsometry, contact angle measurements, and X-ray photoelectron spectroscopy. The bacterial adhesion on the polymer-coated substrates was completely suppressed compared to that on the uncoated substrates.

Investigation of Charge Transfer between Graphene and Oxide Substrates

  • Min, Kyung-Ah;Hong, Suklyun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.186.1-186.1
    • /
    • 2014
  • Graphene, which is a 2-dimensional carbon material, has been attracting much interest due to its unique properties and potential applications. So far, many interesting experimental and theoretical works have been done concerning the electronic properties of graphene on various substrates. Especially, there are many experimental reports about doping in graphene which is caused by interaction between graphene and its supporting substrates. Here, we report the study of charge transfer between graphene and oxide substrates using density functional theory (DFT) calculations. In this study, we have investigated the charge transfer related with graphene considering various oxide substrates such as SiO2(0001) and MgO(111). Details in charge transfer between graphene and oxides are analyzed in terms of charge density difference, band structure and work function.

  • PDF

PC 기판상에 스퍼터링된 투명전도 산화막의 레이저 식각 특성 (Laser Direct Etching on Transparent Conductive Oxide Films Sputtered on Polycarbonate Substrates)

  • 이정민;권상직;조의식
    • 한국전기전자재료학회논문지
    • /
    • 제27권3호
    • /
    • pp.146-150
    • /
    • 2014
  • As a method of simple patterning of transparent conductive oxide (TCO) films deposited on flexible substrates, laser direct etching was carried out on TCO films sputtered on polycarbonate (PC) substrates. As a result of different binding energies in TCO films, indium tin oxide (ITO) and indium gallium zinc oxide (IGZO) were more easily etched than zinc oxide with different $Nd:YVO_4$ laser beam conditions.

폴리머 기판상에 제작한 Indium Zinc Oxide 박막의 특성 (Characteristics of Indium Zinc Oxide thin films deposited on polymer substrate)

  • 임유승;김상모;이원재;김경환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.405-406
    • /
    • 2008
  • The amorphous indium zinc oxide (IZO) thin films were deposited on polyethersulfone (PES) and glass substrates by facing targets sputtering. IZO thin films deposited as functions of gas flow ratio on PES and glass substrates, respectively. The electrical, optical and structural properties of IZO thin films were evaluated by a Hall Effect Measurement, an X-Ray Diffractormeter, UV/VIS spectrometer in visible range and a scanning electron microscopy, respectively. As-deposited IZO thin films exhibited resistivity of $5.4\times10^{-4}$ and $4.5\times10^{-4}$ [$\Omega$-cm] on PES and glass substrates, respectively. The optical transmittance showed over 85% in the visible region on PES and glass substrates.

  • PDF

Growth environments depends interface and surface characteristics of yttria-stabilized zirconia thin films

  • 배종성;박수환;박상신;황정식;박성균
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.309-309
    • /
    • 2011
  • There have been large research activities on the high quality oxide films for the realization oxide based electronics. However, the interface interdiffusion prohibits achieving high quality oxide films, when the oxide films are grown on non-oxide substrates. In the case of Si substrates, there exist lattice mismatch and interface interdiffusion when oxide films deposited on direct Si surface. In this presentation, we report the interface characteristics of yttria-stabilized zirconia films grown on silicon substrates. From x-ray reflectivity analysis we found that the film thickness and interface roughness decreased as the growth temperature increased, indicating that the growth mechanism varies and the chemical reaction is limited to the interface as the growth condition varies. Furthermore, the packing density of the film increased as the growth temperature increased and the film thickness decreased. X-ray photoelectron spectroscopy analysis of very thin films revealed that the amount of chemical shift increased as the growth temperature increased. Intriguingly, the direction of the chemical shift of Zr was opposite to that of Si due to the second nearest neighbor interaction.

  • PDF

As Ion 주입된 Si 기판위의 native oxide가 RTP법으로 성장시킨 Ti-Silicides의 형성에 미치는 영향 (Effects of native oxide on Si substrates-As ion implanted on the formation of Ti-Silicides grown by RTP method)

  • 정주혁;최진석;백수현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 전기.전자공학 학술대회 논문집
    • /
    • pp.319-323
    • /
    • 1988
  • For finding the effects of As on $TiSi_2$ formation, sputter deposited Ti film on Si substrates implanted with various doses of As have been rapid thermal annealed in Ar atmosphere at temperatures of 600-900$^{\circ}C$ for 20 sec. The sheet resistance of Ti-Silicides was examined with 4-point probe, the thickness with ${\alpha}$-step, and the As dopant behavior in Si substrates with ASR. The thickness of Ti-Silicides decreased with increasing As doping, but Ti-Silicides sheet resistance increased with increasing it. However, the critical concentration effect reported by Park et al. was not observed. We observed that the thickness of native oxide increase with increasing As doping. Thus, we concluded that native oxide act as a "barrier" for the Si diffusion.

  • PDF

Miscut된 기판을 이용할 산화물 박막의 에피 성장 (Epitaxial growth of oxide films using miscut substrates)

  • 부상돈
    • 한국진공학회지
    • /
    • 제13권4호
    • /
    • pp.145-149
    • /
    • 2004
  • RF magnetron sputtering 방법으로 miscut된 기판을 이용해서 양질의 압전 산화물 에피 박막을 제작하였다. 박막은 (001) $SrTiO_3$ 기판 위에 증착되었으며, (100) 방향으로 $0^{\circ}$-$8^{\circ}$의 miscut 각도를 갖는 기판들을 사용했다. $4^{\circ}$이상의 큰 miscut 각도를 갖는 기판 위에 성장된 박막의 경우, x-ray diffraction (XRD) 패턴은 perovskite 상의 순수한 PMN-PT 피크만을 보여 주었으며, wavelength dispersive x-ray fluorescence spectroscopy를 이용해서 분석한 조성비는 stoichiometric한 조성비에 가까운 값을 보여주었다. 반면에, miscut 각도가 없는 기판 위에 증착된 박막의 경우, 2차상인 pyrochlore 상을 포함하는 XRD 패턴을 보여주었다. $8^{\circ}$ 기판 위에 성장된 박막의 경우 실온에서 20$\mu$C/$\textrm{cm}^2$라는 높은 잔류분극 값을 보여주었다

산소분압의 변화에 따른 ITO/polymeric 박막의 특성 (Characteristics of ITO/polymeric Films with Change of Oxygen Partial Pressure)

  • 신성호;김현후
    • 한국전기전자재료학회논문지
    • /
    • 제17권8호
    • /
    • pp.846-851
    • /
    • 2004
  • Transparent conducting indium tin oxide (TC-ITO) thin films on polymeric substrates have been deposited by a dc reactive magnetron sputtering without heat treatments. The polymeric substrates are acryl (AC), poly carbornate (PC), and polyethlene terephthalate (PET) as well as soda lime glass is also used to compare with the polymeric substrates. Sputtering parameters are an important factor for high quality of TC-ITO thin films prepared on polymeric substrates. Furthermore, the material, electrical and optical properties of as-deposited ITO films are dominated by the ratio of oxygen partial pressure. As the experimental results, the surface roughness of ITO films becomes rough as the oxygen partial pressure increases. The electrical resistivity of as-deposited ITO films decreases initially, and then increases with the increase of oxygen partial pressure. The optical transmittance at visible wavelength for all polymeric substrates is above 82 %.

Solution-Processed Zinc-Tin Oxide Thin-Film Transistors for Integrated Circuits

  • Kim, Kwang-Ho;Park, Sung-Kyu;Kim, Yong-Hoon;Kim, Hyun-Soo;Oh, Min-Suk;Han, Jeong-In
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.534-536
    • /
    • 2009
  • We have fabricated solution-processed zinc-tin oxide thin film transistors (TFTs) and simple circuits on glass substrates. We report a solutionprocessed zinc-tin oxide TFTs on silicon wafer with mobility greater than 9 $cm^2/V{\cdot}s$ (W/L = 100/5 ${\mu}m$) and threshold voltage variation of less than 1 V after bias-stressing. Also, we fabricated solution-processed zinc-tin oxide circuits including inverters and 7-stage ring oscillators fabricated on glass substrates using the developed zinc-tin oxide TFTs.

  • PDF

금속 불순물 Ca이 Si 기판의 표면 미세 거칠기에 미치는 영향 (The Effect on the Microroughness of Si Substrate by Metallic Impurity Ca)

  • 최형석;전형탁
    • 한국재료학회지
    • /
    • 제9권5호
    • /
    • pp.491-495
    • /
    • 1999
  • In this study, we focus on Ca contaminant which affects on the roughness Si substrate after thermal process. The initial Si substrates were contaminated intentionally by using a standard Ca solution. The contamination levels of Ca impurity were measured by TXRF and the chemical composition of that was analyzed by AES. Then we gre the thermal oxide to investigate the effect of Ca contaminants. The microroughness of the Si surface, the thermal oxide surface, and the surface after removing the thermal oxide were measured to examine the electrical characteristics. The initial substrates that were contaminated with the standard solution of Ca exhibited the contamination levels of 10\ulcorner~10\ulcorneratoms/$\textrm{cm}^2$ which was measured by TXRF. The Ca contaminants were detected by AES and exhibited the peaks of Ca, SI, C and O.After intentional contamination, the surface microroughness of this initial substrate was increased from $1.5\AA$ to 4$\AA$ as contamination levels became higher. The microroughness of the thermal oxide surfaces of both contaminated and bare Si substrates exhibits similar values. But the microroughness of the contaminated$ Si/SiO_2$ interface was increased as contamination increased. The thermal oxide of contaminated substrate exhibited the small minority carrier diffusion length, low breakdown voltage, and slightly high leakage current.

  • PDF