• 제목/요약/키워드: Oxide nanotube

검색결과 157건 처리시간 0.031초

양극산화 기법으로 제조한 TiO2 나노튜브의 촉매 도핑 연구 동향 (Research Trends in Doping Methods on TiO2 Nanotube Arrays Prepared by Electrochemical Anodization)

  • 유현석;최진섭
    • 공업화학
    • /
    • 제26권2호
    • /
    • pp.121-127
    • /
    • 2015
  • 전기화학적 양극산화 기법으로 제조한 타이타늄 나노튜브는 타이타늄 특유의 강한 화학내구성 및 나노튜브의 높은 종횡비로 인하여 넓은 범위에 응용된 소재이다. 전해질의 구성 성분과 종류, pH, 전압, 온도 그리고 양극산화 시간이 타이타늄 나노튜브의 성상을 결정짓는 요소들이며 도핑을 통해 촉매능을 부여할 수 있다. 비금속 및 금속 원소 모두 도핑 가능하며 도핑 방법 역시 다양하다. 도핑 방법에는 합금 양극산화, 열처리법, 함침법, 전기도금법 등 다양한 방법들이 이용되며 점차 간단하고 빠른 도핑 방법을 찾는 방향으로 연구가 진행되고 있다. 본 총설에서는 타이타늄 나노튜브의 생성 원리와 상용된 제법들에 관하여 기술하고 도핑과 그 응용 및 최근의 도핑 연구 동향을 다루도록 하겠다.

이중벽 탄소나노튜브의 염산처리 시간에 따른 전계방출 특성 평가 (Field Emission Characteristics of Double-walled Carbon Nanotubes Related with Hydrochloric Acid Treatment)

  • 정다미;석중현
    • 한국진공학회지
    • /
    • 제20권1호
    • /
    • pp.70-76
    • /
    • 2011
  • 전자 방출원 및 디스플레이 응용분야에서 우수한 가능성을 보이고 있는 이중벽 탄소나노튜브를 Tetrahydrofuran (THF) 열분해 방법으로 대량 합성하였다. 합성된 이중벽 탄소나노튜브는 불순물로 비정질 탄소와 금속촉매를 포함하고 있어, 이를 제거하기 위해 열처리와 과산화수소, 질산, 염산을 이용한 산 처리를 하였다. 정제된 이중벽 탄소나노튜브를 계면 활성제인 Sodium dodecylbenzenesulfonate (SDBS)를 사용하여 잉크를 제작하였고, 잉크를 스프레이 방법으로 Indium Tin Oxide (ITO)기판에 분무하여 전계방출을 위한 에미터를 제작하였다. 본 연구에서는 염산 처리 시간에 따른 이중벽 탄소나노튜브의 특성을 X-ray diffraction, Thermal Gravity Analysis (TGA) 측정을 통해 평가하였고, 염산 처리 시간이 증가할수록 전계방출 특성이 향상되는 것을 FE-current 측정으로 확인하였다.

Metal Grids Embedded Transparent Conductive Electrode with Flexibility and Its Applications

  • Jung, Sunghoon;Lee, Seunghun;Kim, Jong-Kuk;Kang, Jae-Wook;Kim, Do-Geun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.314-314
    • /
    • 2013
  • Recently, flexibility is one of the hottest issues in the field of electronic devices. For flexible displays or solar cells, a development of transparent conductive electrodes (TCEs) with flexibility, bendability and foldability is an essential element. Hundreds of nanometers indium-tin-oxide (ITO) films have been widely used and commercialized as a transparent electrode, but their brittleness make them difficulty to apply flexible electronics. Many researchers have been studying for flexible TCEs such as a few layers of graphene sheets, carbon nanotube networks, conductive polymer films and combinations among them. Although gained flexibility, their transmittance and resistivity have not reached those of commercialized ITO films. Metal grids electrode cannot act as TCEs only, but they can be used to lower the resistance of TCEs with few losses of transmittance. However, the possibility of device shortage will be rise at the devices with metal grids because a surface flatness of TCEs may be deteriorated when metal grids are introduced using conventional methods. In our research, we have developed hybrid TCEs, which combined tens of nanometers ITO film and metal grids which are embedded in flexible substrate. They show $13{\Omega}$/${\Box}f$ sheet resistance with 94% of transmittance. Moreover, the sheet resistance was maintained up to 1 mm of bending radius. Also, we have verified that flexible organic light emitting diodes and organic solar cells with the TCEs showed similar performances compared to commercial ITO (on glass substrate) devices.

  • PDF

Oxide Nanolayers Grown on New Ternary Ti Based Alloy Surface by Galvanic Anodizing-Characteristics and Anticorrosive Properties

  • Calderon Moreno, J.M.;Drob, P.;Vasilescu, C.;Drob, S.I.;Popa, M.;Vasilescu, E.
    • Corrosion Science and Technology
    • /
    • 제16권5호
    • /
    • pp.257-264
    • /
    • 2017
  • Film of new Ti-15Zr-5Nb alloy formed during galvanic anodizing in orthophosphoric acid solution was characterized by optical microscope, scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and Raman micro-spectroscopy. Its anticorrosive properties were determined by electrochemical techniques. The film had a layer with nanotube-like porosity with diameters in 500-1000 nm range. The nano layer contained significant amounts of P and O as well as alloying element. Additionally, Raman micro-spectroscopy identified oxygen as oxygen ion in $TiO_2$ anatase and phosphorous as $P_2O_7{^{4-}}$ ion in phosphotitanate compound. All potentiodynamic polarization curves in artificial Carter-Brugirard saliva with pH values (pH= 3.96, 7.84, and 9.11) depending on the addition of 0.05M NaF revealed nobler behavior of anodized alloy and higher polarization resistance indicating the film is thicker and more compact nanolayer. Lower corrosion rates of the anodized alloy reduced toxicity due to less released ions into saliva. Bigger curvature radii in Nyquist plot and higher phase angle in Bode plot for the anodized alloy ascertain a thicker, more protective, insulating nanolayer existing on the anodized alloy. Additionally, ESI results indicate anodized film consists of an inner, compact, barrier, layer and an outer, less protective, porous layer.

유연전자소자를 위한 차세대 유연 투명전극의 개발 동향 (Technology of Flexible Transparent Conductive Electrode for Flexible Electronic Devices)

  • 김주현;천민우;좌성훈
    • 마이크로전자및패키징학회지
    • /
    • 제21권2호
    • /
    • pp.1-11
    • /
    • 2014
  • Flexible transparent conductive electrodes (TCEs) have recently attracted a great deal of attention owing to rapid advances in flexible electronic devices, such as flexible displays, flexible photovoltanics, and e-papers. As the performance and reliability of flexible electronics are critically affected by the quality of TCE films, it is imperative to develop TCE films with low resistivity and high transparency as well as high flexibility. Indium tin oxide (ITO) has been the most dominant transparent conducting material due to its high optical transparency and electrical conductivity. However, ITO is susceptible to cracking and delamination when it is bent or deformed. Therefore, various types of flexible TCEs, such as carbon nanotube, conducting polymers, graphene, metal mesh, Ag nanowires (NWs), and metal mesh have been extensively investigated. Among several options to replace ITO film, Ag NWs and metal mesh have been suggested as the promising candidate for flexible TCEs. In this paper, we focused on Ag NWs and metal mesh, and summarized the current development status of Ag NWs and metal mesh. The several critical issues such as high contact resistance and haze are discussed, and newly developed technologies to resolve these issues are also presented. In particular, the flexibility and durability of Ag NWs and metal mesh was compared with ITO electrode.

Pd 및 CNT 첨가에 따른 $SnO_2$ 박막의 이산화질소 감지특성 ($NO_2$ gas sensing properties of $SnO_2$ thin films dopped with Pd and CNT)

  • 김형균;이임렬
    • 마이크로전자및패키징학회지
    • /
    • 제15권4호
    • /
    • pp.101-106
    • /
    • 2008
  • 이산화질소를 감지할 수 있는 센서물질로 Pd과 탄소 나노튜브(CNT)가 첨가된 $SnO_2$ 박막을 스핀코팅으로 제조하였으며, 동 시편의 이산화질소에 대한 감지 특성을 $200^{\circ}C$$1ppm{\sim}5ppm$$NO_2$ 농도 하에서 측정하였다. 센서시편의 전기저항은 $NO_2$ 기체의 노출과 농도에 따라 증가 하였으며, Pd이 3wt%로 첨가된 시편의 감도는 26.5로 첨가전의 감도에 비하여 10배 증가하였다. 또한 $SnO_2$ 모체에 첨가한 CNT의 량에 따라서도 감도는 증가 하였으며, 0.225wt% CNT 첨가 시 5ppm의 $NO_2$ 농도에서 감도 값은 72이었다.

  • PDF

Novel Enhanced Flexibility of ZnO Nanowires Based Nanogenerators Using Transparent Flexible Top Electrode

  • 강물결;하인호;김성현;조진우;주병권;이철승
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.490.1-490.1
    • /
    • 2014
  • The ZnO nanowire (NW)-based nanogenerators (NGs) can have rectifying current and potential generated by the coupled piezoelectric and semiconducting properties of ZnO by variety of external stimulation such as pushing, bending and stretching. So, ZnO NGs needed to enhance durability for stable properties of NGs. The durability of the metal electrodes used in the typical ZnO nanogenerators(NGs) is unstable for both electrical and mechanical stability. Indium tin oxide (ITO) is used as transparent flexible electrode but because of high cost and limited supply of indium, the fragility and lack of flexibility of ITO layers, alternatives are being sought. It is expected that carbon nanotube and Ag nanowire conductive coatings could be a prospective replacement. In this work, we demonstrated transparent flexible ZnO NGs by using CNT/Ag nanowire hybrid electrode, in which electrical and mechanical stability of top electrode has been improved. We grew vertical type ZnO NW by hydrothermal method and ZnO NW was coated with hybrid silicone coating solution as capping layer to enhance adhesion and durability of ZNW. We coated the CNT/Ag nanowire hybrid electrode by using bar coating system on a capping layer. Power generation of the ZnO NG is measured by using a picoammeter, a oscilloscope and confirmed surface condition with FE-SEM. As a results, the NGs using the CNT/Ag NW hybrid electrode show 75% transparency at wavelength 550 nm and small change of the resistance of the electrode after bending test. It will be discussed the effect of the improved flexibility of top electrode on power generation enhancement of ZnO NGs.

  • PDF

Improve the Transparency of Liquid Crystal Display Using Hybrid Conductive Films Based on Carbon Nanomaterials

  • Shin, Seung Won;Kim, Ki-Beom;Jung, Yong Un;Hur, Sung-Taek;Choi, Suk-Won;Kang, Seong Jun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.241.2-241.2
    • /
    • 2014
  • We present highly transparent liquid crystal displays (LCDs) using hybrid films based on carbon nanomaterials, metal grid, and indium-tin-oxide (ITO) grid. Carbon based nanomaterials are used as transparent electrodes because of high transmittance. Despite of their high transmittance they have relatively high sheet resistance. To solve this problem, we applied grid and made hybrid conductive films based on carbon nanomaterials. Conventional photolithography processes were used to make a grid pattern of metal and ITO. To fabricate transparent conductive films, carbon nanotube (CNT) ink was spin coated on the grid pattern. The transparency of the conductive film was controlled by shape and size of the grid pattern and the thickness of CNT films. The optical transmittance of CNT-based hybrid films is 92.2% and sheet resistance is also reduced to $168{\Omega}/square$. These substrates were used for the fabrication of typical twisted nematic (TN) LCD cells. From the characteristics of LCD devices such as transmittance, operating voltage, voltage holding ratio our devices were comparable to those of pristine ITO substrates. The result shows that the hybrid conductive films based on carbon nanomaterials could be alternative of ITO for the highly transparent LCDs.

  • PDF

나노입자의 현황조사 및 처리방안 마련을 위한 문헌연구 (Review of Nanoparticles in Drinking Water: Risk Assessment and Treatment)

  • 김승현;홍승관;윤제용;김두일;이상호;권지향;김형수;독고석;국지훈
    • 상하수도학회지
    • /
    • 제25권2호
    • /
    • pp.201-212
    • /
    • 2011
  • Nanotechnology is the applied science which develops new materials and systems sized within 1 to 100 nanometer, and improves their physical, chemical, and biological characteristics by manipulating on an atomic and molecular scale. This nanotechnology has been applied to wide spectrum of industries resulting in production of various nanoparticles. It is expected that more nanoparticles will be generated and enter to natural water bodies, imposing great threat to potable water resources. However their toxicity and treatment options have not been throughly investigated, despite the significant growth of nanotechnology-based industries. The objective of this study is to provide fundamental information for the management of nanoparticles in water supply systems through extensive literature survey. More specifically, two types of nanoparticles are selected to be a potential problem for drinking water treatment. They are carbon nanoparticles such as carbon nanotube and fullerene, and metal nanoparticles including silver, gold, silica and titanium oxide. In this study, basic characteristics and toxicity of these nanoparticles were first investigated systematically. Their monitoring techniques and treatment efficiencies in conventional water treatment plants were also studied to examine our capability to mitigate the risk associated with nanoparticles. This study suggests that the technologies monitoring nanopartilces need to be greatly improved in water supply systems, and more advanced water treatment processes should be adopted for better control of these nanoparticles.

뉴로모픽 시스템용 시냅스 트랜지스터의 최근 연구 동향

  • 남재현;장혜연;김태현;조병진
    • 세라미스트
    • /
    • 제21권2호
    • /
    • pp.4-18
    • /
    • 2018
  • Lastly, neuromorphic computing chip has been extensively studied as the technology that directly mimics efficient calculation algorithm of human brain, enabling a next-generation intelligent hardware system with high speed and low power consumption. Three-terminal based synaptic transistor has relatively low integration density compared to the two-terminal type memristor, while its power consumption can be realized as being so low and its spike plasticity from synapse can be reliably implemented. Also, the strong electrical interaction between two or more synaptic spikes offers the advantage of more precise control of synaptic weights. In this review paper, the results of synaptic transistor mimicking synaptic behavior of the brain are classified according to the channel material, in order of silicon, organic semiconductor, oxide semiconductor, 1D CNT(carbon nanotube) and 2D van der Waals atomic layer present. At the same time, key technologies related to dielectrics and electrolytes introduced to express hysteresis and plasticity are discussed. In addition, we compared the essential electrical characteristics (EPSC, IPSC, PPF, STM, LTM, and STDP) required to implement synaptic transistors in common and the power consumption required for unit synapse operation. Generally, synaptic devices should be integrated with other peripheral circuits such as neurons. Demonstration of this neuromorphic system level needs the linearity of synapse resistance change, the symmetry between potentiation and depression, and multi-level resistance states. Finally, in order to be used as a practical neuromorphic applications, the long-term stability and reliability of the synapse device have to be essentially secured through the retention and the endurance cycling test related to the long-term memory characteristics.