DOI QR코드

DOI QR Code

이중벽 탄소나노튜브의 염산처리 시간에 따른 전계방출 특성 평가

Field Emission Characteristics of Double-walled Carbon Nanotubes Related with Hydrochloric Acid Treatment

  • 정다미 (서울시립대학교 나노과학기술학과) ;
  • 석중현 (서울시립대학교 나노과학기술학과)
  • Jung, Da-Mi (Department of Nano science & technology, University of Seoul) ;
  • Sok, Jung-Hyun (Department of Nano science & technology, University of Seoul)
  • 투고 : 2010.11.05
  • 심사 : 2010.01.12
  • 발행 : 2011.01.30

초록

전자 방출원 및 디스플레이 응용분야에서 우수한 가능성을 보이고 있는 이중벽 탄소나노튜브를 Tetrahydrofuran (THF) 열분해 방법으로 대량 합성하였다. 합성된 이중벽 탄소나노튜브는 불순물로 비정질 탄소와 금속촉매를 포함하고 있어, 이를 제거하기 위해 열처리와 과산화수소, 질산, 염산을 이용한 산 처리를 하였다. 정제된 이중벽 탄소나노튜브를 계면 활성제인 Sodium dodecylbenzenesulfonate (SDBS)를 사용하여 잉크를 제작하였고, 잉크를 스프레이 방법으로 Indium Tin Oxide (ITO)기판에 분무하여 전계방출을 위한 에미터를 제작하였다. 본 연구에서는 염산 처리 시간에 따른 이중벽 탄소나노튜브의 특성을 X-ray diffraction, Thermal Gravity Analysis (TGA) 측정을 통해 평가하였고, 염산 처리 시간이 증가할수록 전계방출 특성이 향상되는 것을 FE-current 측정으로 확인하였다.

High-quality double-walled carbon nanotubes (DWCNTs) were synthesized by catalytic decomposition method at $800^{\circ}C$ using Tetrahydrofuran. The as-synthesized DWCNTs typically have catalytic impurities and amorphous carbon, which were removed by two-step purification process, consisting of thermal oxidation and H2O2, HNO3, HCl treatment. The DWCNT suspension was prepared by dispersing the purified DWCNTs in an aqueous sodium dodecylbenzenesulfonate solution with horn-type sonication. This was then sprayed on ITO glass to fabricate CNT field emitters. The quality of purified DWCNTs was estimated with X-ray diffraction and Thermal Gravity Analysis. The field emission properties were improved by increasing the process time of HCl treatment.

키워드

참고문헌

  1. Sumio Iijima, NATURE. 354, 56-58 (1991). https://doi.org/10.1038/354056a0
  2. Y. Saito, K. Hamaguchi, K. Hata, K. Uchida, Y. Tasaka, F. Ikazaki, M. Yumura, A. Kasuya, and Y. Nishina, NATURE. 389, 554 (1997).
  3. S. K. Lee, J. H. Moon, S. H. Hwang, G. C. Kim, D. Y. Lee, D. H. Kim, and M. H. Jeon, Korean Vac. Soc. 17, 67-72 (2008). https://doi.org/10.5757/JKVS.2008.17.1.067
  4. Ray H. Baughman, Anvar A. Zakhidov, and Walt A. de Heer, Science. 297, 787-792 (2002). https://doi.org/10.1126/science.1060928
  5. Sora Lee, Won Bin Im, Jong Hyuk Kang, and Duk Young Jeon, J. Vac. Sci. Technol. B. 23, 745-748 (2005). https://doi.org/10.1116/1.1884120
  6. 신허영, 김동희, 안병건, 최우석, 정원섭, 정우창, 조영래, 대한금속재료학회지 42, 508-513 (2006).
  7. Yahachi Saito, Takanori Nakahira, and Sashiro Uemura, J. Phys. Chem. B. 107, 931-934 (2003). https://doi.org/10.1021/jp021367o
  8. T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, Chemical Physics Letters. 243, 49-54 (1995). https://doi.org/10.1016/0009-2614(95)00825-O
  9. S. C. Lyu, B. C. Liu, S. H. Lee, C. Y. Park, H. K. Kang, C. W. Yang, and C. J. Lee, J. Phys. Chem. B. 108, 1613-1616 (2004). https://doi.org/10.1021/jp030661t
  10. Yue-Ying Fan, Hui-Ming Cheng, Yong-Liang Wei, Ge Su, and Zu-Hong Shen, Carbon. 38, 789-795 (2000). https://doi.org/10.1016/S0008-6223(99)00178-5
  11. Bonard JM, Stora T, Salvetat JP, Maier F, Stockli T, and Duschl C, Adv Mater. 9, 827-831 (1997). https://doi.org/10.1002/adma.19970091014
  12. Ebbesen TW, Ajayan PM, Hiura H, and Tanigaki K, Nature. 367, 519 (1994).
  13. J. M. Xa, X. B. Zhanga, Y. Lia, X. Y. Tao, F. Chen, T. Lia, Y. Bao, and H. J. Geise, Diamond & Related Materials. 13, 1807-1811 (2004). https://doi.org/10.1016/j.diamond.2004.04.011
  14. Seung Woo Jeong, Seong Yong Son, and Dong Hyun Lee, Theories and Applications of Chem. Eng. 13, 2 (2007).
  15. Wang YH, Shan HW, Hauge RH, Pasquali M, and Smalley RE, J. Phys. Chem. B. 111, 249-252 (2007).
  16. Zhang H, Sun CH, Li F, Li HX, and Cheng HM, J. Phys. Chem. B. 110, 9477-9481 (2006). https://doi.org/10.1021/jp060271h