• Title/Summary/Keyword: Oxide electrodes and electrolyte

Search Result 90, Processing Time 0.025 seconds

An Electric Double-Layer Capacitor Based on Eutectic Gallium-Indium Liquid Metal Electrodes (공융 갈륨-인듐 액체금속 전극 기반 전기이중층 커패시터)

  • KIM, JI-HYE;KOO, HYUNG-JUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.6
    • /
    • pp.627-634
    • /
    • 2018
  • Gallium-based liquid metal, e.g., eutectic gallium-indium (EGaIn), is highly attractive as an electrode material for flexible and stretchable devices. On the liquid metal, oxide layer is spontaneously formed, which has a wide band-gap, and therefore is electrically insulating. In this paper, we fabricate a capacitor based on eutectic gallium-indium (EGaIn) liquid metal and investigate its cyclic voltammetry (CV) behavior. The EGaIn capacitor is composed of two EGaIn electrodes and electrolyte. CV curves reveal that the EGaIn capacitor shows the behavior of electric double-layer capacitors (EDLC), where the oxide layers on the EGaIn electrodes serves as the dielectric layer of EDLC. The oxide thicker than the spontaneously-formed native oxide decreases the capacitance of the EGaIn capacitor, due to increased voltage loss across the oxide layer. The EGaIn capacitor without oxide layer exhibits unstable CV curves during the repeated cycles, where self-repair characteristic of the oxide was observed. Finally, the electrolyte concentration is optimized by comparing the CV curves at various electrolyte concentrations.

X-ray Absorption Spectroscopy of a Poly Sodium 4-Styrensulfonate Intercalated Graphite Oxide Electrode

  • Jeong, Hye-Gyeong;Park, Byeong-Gyu;Kim, Jae-Yeong;No, Han-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.393-393
    • /
    • 2011
  • We investigated the electronic structures of a poly sodium 4-styrensulfonate intercalated graphite oxide (PSSGO) electrode and a precursor graphite oxide (GO) electrode using X-ray absorption spectroscopy (XAS). Both electrodes were obtained from electrochemical cells. We found that in the C K-edge XAS spectra the ${\pi}^*$ state intensity originating from the sp2 hybridization of graphite decreases predominantly in the graphite oxide and PSSGO electrodes. This indicates that the negatively charged electrolyte ion (BF4-) is absorbed onto the electrodes and is transferred to the ${\pi}^*$ state of the both electrodes. The analysis of their F K-edge spectra reveals that more BF4- ions were found in the PSSGO electrode than in the graphite oxide electrode. This indicates that more electrolyte ions are absorbed in the PSSGO than in the graphite oxide electrode. We argue that this is the main reason why PSSGO cells have higher capacitance, higher energy density, and higher power density when compared to the graphite oxide cells. We also found that BF4- is the primary working ion that can be inserted into the interlayers of the PSSGO electrode.

  • PDF

The Crack Behavior in the Planar Solid Oxide Fuel Cell under the Fabricating and Operating Temperature (제조 및 작동온도에서 평판형 고체연료전지에 발생한 균열 거동)

  • Park, Cheol Jun;Kwon, Oh Heon;Kang, Ji Woong
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.34-41
    • /
    • 2014
  • The goal of this study is to investigate some crack behaviors which affect the crack propagation angle at the planar solid oxide fuel cell with cracks under the fabricating and operating temperature and analyze the stresses by 3 steps processing on the solid oxide fuel cell. Currently, there are lots of researches of the performance improvement for fuel cells, and also for the more powerful efficiency. However, the planar solid oxide fuel cell has demerits which the electrode materials have much brittle properties and the thermal condition during the operating process. It brings some problems which have lower reliability owing to the deformation and cracks from the thermal expansion differences between the electrolyte, cathode and anode electrodes. Especially the crack in the corner of the electrodes gives rise to the fracture and deterioration of the fuel cells. Thus it is important to evaluate the behavior of the cracks in the solid oxide fuel cell for the performance and safety operation. From the results, we showed the stress distributions from the cathode to the anode and the effects of the edge crack in the electrolyte and the slant crack in the anode. Futhermore the crack propagation angle was expected according to the crack length and slant angle and the variation of the stress intensity factors for the each fracture mode was shown.

Performance Modeling of Single-Chamber Micro SOFC (단실형 마이크로 고체 산화물 연료전지의 작동특성 전산모사)

  • Cha, Jeong-Hwa;Chung, Chan-Yeup;Chung, Yong-Chae;Kim, Joosun;Lee, Jongho;Lee, Hae-Weon
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.854-859
    • /
    • 2005
  • Performance of micro scale intermediate temperature solid oxide fuel cell system has been successfully evaluated by computer simulation based on macro modeling. Two systems were studied in this work. The one is designed that the ceria-based electrolyte placed between composite electrodes and the other is designed that electrodes alternately placed on the electrolyte. The injected gas was composed of hydrogen and air. The polarization curve was obtained through a series of calculations for ohmic loss, activation loss and concentration loss. The calculation of each loss was based on the solving of mathematical model of multi physical-phenomena such as ion conduction, fluid dynamics and diffusion and convection by Finite Element Method (FEM). The performance characteristics of SOFC were quantitatively investigated for various structural parameters such as distance between electrodes and thickness of electrolyte.

Electrical Properties in GDC (Gd2O3-Doped CeO2)/LSCF (La0.6Sr0.4Co0.2Fe0.8O3) Cathode Composites for Intermediate Temperature Solid Oxide Fuel Cells

  • Lee, Hong-Kyeong;Hwang, Jin-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.1
    • /
    • pp.110-115
    • /
    • 2011
  • $Gd_2O_3$-doped $CeO_2$ (GDC) and $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ (LSCF) composite cathode materials were prepared in order to be applied to intermediate-temperature solid oxide fuel cells. The electrochemical polarization was evaluated using ac impedance spectroscopy involving geometric restriction at the interface between an ionic electrolyte and a mixed-conducting cathode. In order to optimize the cathode composites applicable to a GDC electrolyte, the cathode composites were evaluated in terms of polarization losses with regard to a given electrolyte, i.e., GDC electrolyte. The polarization increased significantly with decreasing temperature and was critically dependent on the compositions of the composite cathodes. The optimized cathode composite was found to consist of GDC 50 wt% and LSCF 50 wt%; the corresponding normalized polarization loss was calculated to be 0.64 at $650^{\circ}C$.

Electrochemical model for the simulation of solid oxide fuel cells (고체산화물연료전지의 시뮬레이션을 위한 전기화학모델)

  • Park, Joon-Guen;Lee, Shin-Ku;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.63-66
    • /
    • 2008
  • This study presents 0-dimensional model for solid oxide fuel cells(SOFCs). The physics of the cell and the simplifying assumptions are presented, and only hydrogen participates in the electrochemical reaction. The electrical potential is predicted using this model. The Butler-Volmer equation is used to describe the activation polarization and the exchange current density is changed according to the partial pressure of reactants and the temperature. The electrical conductivities of electrodes and an electrolyte are calculated for the ohmic polarization. Material characteristics and temperature affect those factors. Analysis of concentration polarization based on transport of gaseous species through porous electrodes is incorporated in this model. Both binary diffusion and Knudsen diffusion are considered as the diffusion mechanism. For validation, simulation results at this work are compared with our experimental results and numerical results by other researchers.

  • PDF

Bi-layer Electrolyte for Preventing Solid Oxide Fuel Cell Stack Degradation (고체산화물 연료전지 스택 열화 방지를 위한 전해질 기술)

  • Park, Mi Young;Bae, Hongyeul;Lim, Hyung-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.289-294
    • /
    • 2014
  • The stability of a solid oxide fuel cell (SOFC) stack is strongly dependent on the magnitude and profile of the internal chemical potential of the solid electrolyte. If the internal partial pressure is too high, the electrolyte can be delaminated from the electrodes. The formation of high internal pressure is attributed to a negative cell voltage, and this phenomenon can occur in a bad cell (with higher resistance) in a stack. This fact implies that the internal chemical potential plays an important role in determining the lifetime of a stack. In the present work, we fabricate planar type anode-supported cells ($25cm^2$) with a bi-layer electrolyte (with locally increased electronic conduction at the anode side) to prevent high internal pressure, and we test the fabricated cells under a negative voltage condition. The results indicate that the addition of electronic conduction in the electrolyte can effectively depress internal pressure and improve the cell stability.

Synthesis and Characterization of Phase Pure NiO Nanoparticles via the Combustion Route using Different Organic Fuels for Electrochemical Capacitor Applications

  • Srikesh, G.;Nesaraj, A. Samson
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.16-25
    • /
    • 2015
  • Transition metal oxide nanocrystalline materials are playing major role in energy storage application in this scenario. Nickel oxide is one of the best antiferromagnetic materials which is used as electrodes in energy storage devices such as, fuel cells, batteries, electrochemical capacitors, etc. In this research work, nickel oxide nanoparticles were synthesized by combustion route in presence of organic fuels such as, glycine, glucose and and urea. The prepared nickel oxide nanoparticles were calcined at 600℃ for 3 h to get phase pure materials. The calcined nanoparticles were preliminarily characterized by XRD, particle size analysis, SEM and EDAX. To prepare nickel oxide electrode materials for application in supercapacitors, the calcined NiO nanoparticles were mixed with di-methyl-acetamide and few drops of nafion solution for 12 to 16 h. The above slurry was coated in the graphite sheet and dried at 50℃ for 2 to 4 h in a hot air oven to remove organic solvent. The dried sample was subjected to electrochemical studies, such as cyclic voltammetry, AC impedance analysis and chrono-coulometry studies in KOH electrolyte medium. From the above studies, it was found that nickel oxide nanoparticles prepared by combustion synthesis using glucose as a fuel exhibited resulted in low particle diameter (42.23 nm). All the nickel oxide electrodes have shown better good capacitance values suitable for electrochemical capacitor applications.

Synthesis and Electrochemical Performance of Reduced Graphene Oxide/AlPO4-coated LiMn1.5Ni0.5O4 for Lithium-ion Batteries

  • Hur, Jaehyun;Kim, Il Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3553-3558
    • /
    • 2014
  • The reduced graphene oxide(rGO)/aluminum phosphate($AlPO_4$)-coated $LiMn_{1.5}Ni_{0.5}O_4$ (LMNO) cathode material has been developed by hydroxide precursor method for LMNO and by a facile solution based process for the coating with GO/$AlPO_4$ on the surface of LMNO, followed by annealing process. The amount of $AlPO_4$ has been varied from 0.5 wt % to 1.0 wt %, while the amount of rGO is maintained at 1.0 wt %. The samples have been characterized by X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. The rGO/$AlPO_4$-coated LMNO electrodes exhibit better cyclic performance compared to that of pristine LMNO electrode. Specifically, rGO(1%)/$AlPO_4$(0.5%)- and rGO(1%)/$AlPO_4$(1%)-coated electrodes deliver a discharge capacity of, respectively, $123mAhg^{-1}$ and $122mAhg^{-1}$ at C/6 rate, with a capacity retention of, respectively, 96% and 98% at 100 cycles. Furthermore, the surface-modified LMNO electrodes demonstrate higher-rate capability. The rGO(1%)/$AlPO_4$(0.5%)-coated LMNO electrode shows the highest rate performance demonstrating a capacity retention of 91% at 10 C rate. The enhanced electrochemical performance can be attributed to (1) the suppression of the direct contact of electrode surface with the electrolyte, resulting in side reactions with the electrolyte due to the high cut-off voltage, and (2) smaller surface resistance and charge transfer resistance, which is confirmed by total polarization resistance and electrochemical impedance spectroscopy.

Fabrication of Transparent Conductive Oxide-less Dye-Sensitized Solar Cells Consisting of Titanium Double Layer Electrodes (이중층 티타늄 전극으로 구성된 TCO-less 염료감응형 태양전지 제작에 관한 연구)

  • Shim, Choung-Hwan;Kim, Yun-Gi;Kim, Dong-Hyun;Lee, Hae-June;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.114-118
    • /
    • 2011
  • Dye-Sensitized Solar Cells(DSSCs) consist of a titanium dioxide($TiO_2$) nano film of the photo electrode, dye molecules on the surface of the $TiO_2$ film, an electrolyte layer and a counter electrode. But two transparent conductive oxide(TCO) substrates are estimated to be about 60[%] of the total cost of the DSSCs. Currently novel TCO-less structures have been investigated in order to reduce the cost. In this study, we suggested a TCO-less DSSCs which has titanium double layer electrodes. Titanium double layer electrodes are formed by electron-beam evaporation method. Analytical instruments such as electrochemical impedance spectroscopy, scanning electron microscope were used to evaluate the TCO-less DSSCs. As a result, the proposed structure decreases energy conversion efficiency and short-circuit current density compared with the conventional DSSCs structure with FTO glass, while internal series impedance of TCO-less DSSCs using titanium double layer electrodes decreases by 27[%]. Consequently, the fill factor is improved by 28[%] more than that of the conventional structure.