Browse > Article
http://dx.doi.org/10.7316/KHNES.2018.29.6.627

An Electric Double-Layer Capacitor Based on Eutectic Gallium-Indium Liquid Metal Electrodes  

KIM, JI-HYE (Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology)
KOO, HYUNG-JUN (Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.29, no.6, 2018 , pp. 627-634 More about this Journal
Abstract
Gallium-based liquid metal, e.g., eutectic gallium-indium (EGaIn), is highly attractive as an electrode material for flexible and stretchable devices. On the liquid metal, oxide layer is spontaneously formed, which has a wide band-gap, and therefore is electrically insulating. In this paper, we fabricate a capacitor based on eutectic gallium-indium (EGaIn) liquid metal and investigate its cyclic voltammetry (CV) behavior. The EGaIn capacitor is composed of two EGaIn electrodes and electrolyte. CV curves reveal that the EGaIn capacitor shows the behavior of electric double-layer capacitors (EDLC), where the oxide layers on the EGaIn electrodes serves as the dielectric layer of EDLC. The oxide thicker than the spontaneously-formed native oxide decreases the capacitance of the EGaIn capacitor, due to increased voltage loss across the oxide layer. The EGaIn capacitor without oxide layer exhibits unstable CV curves during the repeated cycles, where self-repair characteristic of the oxide was observed. Finally, the electrolyte concentration is optimized by comparing the CV curves at various electrolyte concentrations.
Keywords
Liquid metal; Eutectic gallium-indium; Electric double-layer capacitor; Electrochemistry; Gallium oxide;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 A. J. Downs, "Chemistry of aluminium, gallium, indium and thallium", Vol. 1, Springer, the Netherlands, 1993.
2 J. Thelen, M. D. Dickey, and T. Ward, "A study of the production and reversible stability of egain liquid metal microspheres using flow focusing", Lab on a Chip, Vol. 12, No. 20, 2012, pp. 3961-3967.   DOI
3 Q. Xu, N. Oudalov, Q. Guo, H. M. Jaeger, and E. Brown, "Effect of oxidation on the mechanical properties of liquid gallium and eutectic gallium-indium", Physics of Fluids, Vol. 24, No. 6, 2012, p. 063101.   DOI
4 S. Holcomb, M. Brothers, A. Diebold, W. Thatcher, D. Mast, C. Tabor, and J. Heikenfeld, "Oxide-free actuation of gallium liquid metal alloys enabled by novel acidified siloxane oils", Langmuir, Vol. 32, No. 48, 2016, pp. 12656-12663.   DOI
5 Y. Tokuda, J. L. B. Moya, G. Memoli, T. Neate, D. R. Sahoo, S. Robinson, J. Pearson, M. Jones, and S. Subramanian, "Programmable liquid matter: 2d shape deformation of highly conductive liquid metals in a dynamic electric field", Proceedings of the 2017 ACM International Conference on Interactive Surfaces and Spaces, ACM, 2017, p. 142.
6 S. Zhu, J. H. So, R. Mays, S. Desai, W. R. Barnes, B. Pourdeyhimi, and M. D. Dickey, "Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core", Advanced Functional Materials, Vol. 23, No. 18, 2013, pp. 2308-2314.   DOI
7 T. Hutter, W. A. C. Bauer, S. R. Elliott, and W. T. Huck, "Formation of spherical and non spherical eutectic gallium- indium liquid metal microdroplets in microfluidic channels at room temperature", Advanced Functional Materials, Vol. 22, No. 12, 2012, pp. 2624-2631.   DOI
8 A. Diebold, A. Watson, S. Holcomb, C. Tabor, D. Mast, M. Dickey, and J. Heikenfeld, "Electrowetting-actuated liquid metal for rf applications", Journal of Micromechanics and Microengineering, Vol. 27, No. 2, 2017, p. 025010.   DOI
9 Y. Zheng, Z. Z. He, J. Yang, and J. Liu, "Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism", Scientific Reports, Vol. 4, 2014, p. 4588.
10 A. Fassler and C. Majidi, "3d structures of liquid-phase gain alloy embedded in pdms with freeze casting", Lab on a Chip, Vol. 13, No. 22, 2013, pp. 4442-4450.   DOI
11 C. Ladd, J. H. So, J. Muth, and M. D. Dickey, "3d printing of free standing liquid metal microstructures", Advanced Materials, Vol. 25, No. 36, 2013, pp. 5081-5085.   DOI
12 Y. Gao, H. Ota, E. W. Schaler, K. Chen, A. Zhao, W. Gao, H. M. Fahad, Y. Leng, A. Zheng, F. Xiong, C. Zhang, L. C. Tai, P. Zhao, R. S. Fearing, and A. Javey, "Wearable microfluidic diaphragm pressure sensor for health and tactile touch monitoring", Advanced Materials, Vol. 29, No. 39, 2017, p. 1701985.   DOI
13 D. Membreno, L. Smith, K. S. Shin, C. O. Chui, and B. Dunn, "A high-energy-density quasi-solid-state carbon nanotube electrochemical double-layer capacitor with ionogel electrolyte", Translational Materials Research, Vol. 2, No. 1, 2015, p. 015001.   DOI
14 J. H. So, H. J. Koo, M. D. Dickey, and O. D. Velev, "Ionic current rectification in soft matter diodes with liquid metal electrodes", Advanced Functional Materials, Vol. 22, No. 3, 2012, pp. 625-631.   DOI
15 H. J. Koo, J. H. So, M. D. Dickey, and O. D. Velev, "Towards all soft matter circuits: Prototypes of quasi liquid devices with memristor characteristics", Advanced Materials, Vol. 23, No. 31, 2011, pp. 3559-3564.   DOI
16 M. R. Khan, C. B. Eaker, E. F. Bowden, and M. D. Dickey, "Giant and switchable surface activity of liquid metal via surface oxidation", Proceedings of the National Academy of Sciences, Vol. 111, No. 39, 2014, pp. 14047-14051.
17 G. Li, X. Wu, and D. W. Lee, "A galinstan-based inkjet printing system for highly stretchable electronics with self-healing capability", Lab on a Chip, Vol. 16, No. 8, 2016, pp. 1366-1373.   DOI
18 Y. Q. Jiang, Q. Zhou, and L. Lin, "Planar mems supercapacitor using carbon nanotube forests", 2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems, 2009, pp. 587-590.
19 D. Pech, M. Brunet, P.-L. Taberna, P. Simon, N. Fabre, F. Mesnilgrente, V. Conedera, and H. Durou, "Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor", Journal of Power Sources, Vol. 195, No. 4, 2010, pp. 1266-1269.   DOI
20 L. R. F. Allen J. Bard, "Electrochemical methods fundamentals and applications", Willey, USA, 2001.
21 A. Tabatabai, A. Fassler, C. Usiak and C. Majidi, "Liquidphase gallium-indium alloy electronics with microcontact printing", Langmuir, Vol. 29, No. 20, 2013, p. 6194.   DOI
22 M. D. Dickey, R. C. Chiechi, R. J. Larsen, E. A. Weiss, D. A. Weitz, and G. M. Whitesides, "Eutectic gallium-indium (egain): A liquid metal alloy for the formation of stable structures in microchannels at room temperature", Advanced Functional Materials, Vol. 18, No. 7, 2008, pp. 1097-1104.   DOI
23 J. H. Kim, S. Kim, J. H. So, K. Kim, and H. J. Koo, "Cytotoxicity of Gallium-Indium Liquid Metal in Aqueous Environment", ACS Applied Materials & Interfaces, Vol. 10, No. 20, 2018, pp. 17448-17454.   DOI
24 T. Liu, P. Sen, and C. J. Kim, "Characterization of nontoxic liquid-metal alloy galinstan for applications in microdevices", Journal of Microelectromechanical Systems, Vol. 21, No. 2, 2012, pp. 443-450.   DOI
25 D. Zrnic and D. S. Swatik, "On the resistivity and surface tension of the eutectic alloy of gallium and indium", Journal of the Less Common Metals, Vol. 18, No. 1, 1969, pp. 67-68.   DOI
26 C. Karcher, V. Kocourek, and D. Schulze, "Experimental investigations of electromagnetic instabilities of free surfaces in a liquid metal drop", International Scientific Colloquium, Modelling for Electromagnetic Processing, 2003, pp. 105-110.
27 Y. Lu, Q. Hu, Y. Lin, D. B. Pacardo, C. Wang, W. Sun, F. S. Ligler, M. D. Dickey, and Z. Gu, "Transformable liquid-metal nanomedicine", Nature Communications, Vol. 6, 2015, p. 10066.   DOI
28 J. E. Chandler, H. H. Messer, and G. Ellender, "Cytotoxicity of gallium and indium ions compared with mercuric ion", Journal of Dental Research, Vol. 73, No. 9, 1994, pp. 1554-1559.   DOI
29 M. Varga, C. Ladd, S. Ma, J. Holbery, and G. Trsoter, "On-skin liquid metal inertial sensor", Lab on a Chip, Vol. 17, No. 19, 2017, pp. 3272-3278.   DOI
30 R. C. Chiechi, E. A. Weiss, M. D. Dickey, and G. M. Whitesides, "Eutectic gallium-indium (egain): A moldable liquid metal for electrical characterization of self-assembled monolayers", Angewandte Chemie International Edition, Vol. 47, No. 1, 2007, pp. 142-144.   DOI
31 J. W. Boley, E. L. White, G. T. C. Chiu, and R. K. Kramer, "Direct writing of gallium-indium alloy for stretchable electronics", Advanced Functional Materials, Vol. 24, No. 23, 2014, pp. 3501-3507.   DOI
32 X. Shi, C. H. Cheng, Y. Zheng, and P. Wai, "An egain-based flexible piezoresistive shear and normal force sensor with hysteresis analysis in normal force direction", Journal of Micromechanics and Microengineering, Vol. 26, No. 10, 2016, p. 105020.   DOI
33 H. Ota, K. Chen, Y. Lin, D. Kiriya, H. Shiraki, Z. Yu, T. J. Ha, and A. Javey, "Highly deformable liquid-state heterojunction sensors", Nature Communications, Vol. 5, 2014, p. 5032.   DOI
34 J. B. Chossat, Y. L. Park, R. J. Wood, and V. Duchaine, "A soft strain sensor based on ionic and metal liquids", IEEE Sensors Journal, Vol. 13, No. 9, 2013, pp. 3405-3414.   DOI
35 Y. S. Lee, D. Chua, R. E. Brandt, S. C. Siah, J. V. Li, J. P. Mailoa, S. W. Lee, R. G. Gordon, and T. Buonassisi, "Atomic layer deposited gallium oxide buffer layer enables 1.2 v open circuit voltage in cuprous oxide solar cells", Advanced Materials, Vol. 26, No. 27, 2014, pp. 4704-4710.   DOI
36 J. So and H. J. Koo, "Study on the Electrochemical Characteristics of a EGaIn Liquid Metal Electrode for Supercapacitor Applications", Trans. of the Korean Hydrogen and New Energy Society, Vol. 27, No. 2, 2016, pp. 176-181.   DOI
37 M. D. Stoller and R. S. Ruoff, "Best practice methods for determining an electrode material's performance for ultracapacitors", Energy & Environmental Science, Vol. 3, No. 9, 2010, pp. 1294-1301.   DOI