• 제목/요약/키워드: Oxide dispersion strengthened (ODS)

검색결과 40건 처리시간 0.02초

A novel approach for manufacturing oxide dispersion strengthened (ODS) steel cladding tubes using cold spray technology

  • Maier, Benjamin;Lenling, Mia;Yeom, Hwasung;Johnson, Greg;Maloy, Stuart;Sridharan, Kumar
    • Nuclear Engineering and Technology
    • /
    • 제51권4호
    • /
    • pp.1069-1074
    • /
    • 2019
  • A novel fabrication method of oxide dispersion strengthened (ODS) steel cladding tubes for advanced fast reactors has been investigated using the cold spray powder-based materials deposition process. Cold spraying has the potential advantage for rapidly fabricating ODS cladding tubes in comparison with the conventional multi-step extrusion process. A gas atomized spherical 14YWT (Fe-14%Cr, 3%W, 0.4%Ti, 0.2% Y, 0.01%O) powder was sprayed on a rotating cylindrical 6061-T6 aluminum mandrel using nitrogen as the propellant gas. The powder lacked the oxygen content needed to precipitate the nanoclusters in ODS steel, therefore this work was intended to serve as a proof-of-concept study to demonstrate that free-standing steel cladding tubes with prototypical ODS composition could be manufactured using the cold spray process. The spray process produced an approximately 1-mm thick, dense 14YWT deposit on the aluminum-alloy tube. After surface polishing of the 14YWT deposit to obtain desired cladding thickness and surface roughness, the aluminum-alloy mandrel was dissolved in an alkaline medium to leave behind a free-standing ODS tube. The as-fabricated cladding tube was annealed at $1000^{\circ}C$ for 1 h in an argon atmosphere to improve the overall mechanical properties of the cladding.

MA 316L ODS 및 Wet 316L ODS 스테인리스강에서 충격에너지에 미치는 소결 공정의 영향 (Effects of the Sintering Variable on Impact Energy in MA 316L ODS and Wet 316L ODS Stainless Steels)

  • 김성수;한창희;장진성
    • 한국분말재료학회지
    • /
    • 제17권2호
    • /
    • pp.113-122
    • /
    • 2010
  • Two kinds of oxide-dispersion-strengthened (ODS) 316L stainless steel were manufactured using a wet mixing process(wet) and a mechanical alloying method (MA). An MA 316L ODS was prepared by a mixing of metal powder and a mechanical alloying process. A wet 316L ODS was manufactured by a wet mixing with 316L stainless steel powder. A solution of yttrium nitrate was dried after being in the wet 316L ODS alloy. The results showed that carbon and oxygen were effectively reduced during the degassing process before the hydroisostatic process (HIP) in both alloys. It appeared that the effect of HIP treatment on increase in impact energy was pronounced in the MA 316L ODS alloy. The MA 316L ODS alloy showed a higher yield strength and a smaller elongation, when compared to the wet 316L ODS alloy. This seemed to be attributed to the enhancement of bonding between oxide and matrix particles from HIP and to the presence of a finer oxide of about 20 nm from the MA process in the MA 316L ODS alloy.

순수 타이타늄 기반 산화물분산강화 합금의 미세조직 및 기계적 특성 (Microstructure and Mechanical Properties of Oxide Dispersion Strengthened alloy Based on Commercially Pure Titanium)

  • 박태성;김정한
    • 한국분말재료학회지
    • /
    • 제25권4호
    • /
    • pp.327-330
    • /
    • 2018
  • This study is conducted as a preliminary research to verify the feasibility of Ti-based Oxide dispersion strengthened (ODS) alloy. Pure-Ti powder is mixed with $Y_2O_3$ powder and subsequently, mechanically alloyed at $-150^{\circ}C$. The Ti-based ODS powder is hot-isostatically pressed and subsequently hot-rolled for recrystallization. The microstructure consists of elongated grains and Y excess fine particles. The oxide particle size is larger than that of the typical Fe-based ODS steel. Tensile test shows that the tensile ductility is approximately 25%, while the strength is significantly higher than that of pure Ti. The high-temperature hardness of the Ti-ODS alloy is also significantly higher than that of pure Ti at all temperatures, while being lower than that of Ti-6Al-4V. The dimple structure is well developed, and no evidence of cleavage fracture surface is observed in the fracture surface of the tensile specimen.

Development of Fe-12%Cr Mechanical-Alloyed Nano-Sized ODS Heat-Resistant Ferritic Alloys

  • 김익수;최병영
    • 소성∙가공
    • /
    • 제8권3호
    • /
    • pp.265-265
    • /
    • 1999
  • The development of mechanical alloying (MA)-oxide dispersion strengthened (ODS) heat-resistant ferritic alloys of Fe-12%Cr with W, Ti and Y₂O₃additions were carried out. Fe-12%Cr alloys with 3%W, 0.4%Ti and 0.25% Y₂O₃additions showed a much finer and more uniform dispersion of oxide particles among the alloy system studied. Nano-sized oxides dispersed in the alloys suppress the grain growth during annealing at a high temperature and resulted in the remarkable improvement of creep strength. The oxide phase was identified as a complex oxide type of Y-Ti-O.

산화물 분산 강화 강 분말이 첨가된 자동차 부품용 철계 복합 소재의 미세조직 및 마모 특성 (Microstructure and Wear Properties of Oxide Dispersion Strengthened Steel Powder Added Steel-Based Composite Material for Automotive Part)

  • 김영균;박종관;이기안
    • 한국분말재료학회지
    • /
    • 제25권1호
    • /
    • pp.36-42
    • /
    • 2018
  • In order to expand the application of oxide dispersion-strengthened (ODS) steel, a composite material is manufactured by adding mechanically alloyed ODS steel powder to conventional steel and investigated in terms of microstructure and wear properties. For comparison, a commercial automobile part material is also tested. Initial microstructural observations confirm that the composite material with added ODS steel contains i) a pearlitic Fe matrix area and ii) an area with Cr-based carbides and ODS steel particles in the form of a $Fe-Fe_3C$ structure. In the commercial material, various hard Co-, Fe-Mo-, and Cr-based particles are present in a pearlitic Fe matrix. Wear testing using the VSR engine simulation wear test confirms that the seatface widths of the composite material with added ODS steel and the commercial material are increased by 24% and 47%, respectively, with wear depths of 0.05 mm and 0.1 mm, respectively. The ODS steel-added composite material shows better wear resistance. Post-wear-testing surface and cross-sectional observations show that particles in the commercial material easily fall off, while the ODS steel-added material has an even, smooth wear surface.

복합 밀링 공정으로 제조된 산화물 분산 강화 강의 미세조직 및 고온 기계적 특성 (Microstructure and High Temperature Mechanical Properties of Oxide Dispersion Strengthened Steels Manufactured by Combination Milling Process)

  • 이정욱;김영균;김정한;김휘준;이기안
    • 한국분말재료학회지
    • /
    • 제28권5호
    • /
    • pp.389-395
    • /
    • 2021
  • Oxide dispersion-strengthened (ODS) steel has excellent high-temperature properties, corrosion resistance, and oxidation resistance, and is expected to be applicable in various fields. Recently, various studies on mechanical alloying (MA) have been conducted for the dispersion of oxide particles in ODS steel with a high number density. In this study, ODS steel is manufactured by introducing a complex milling process in which planetary ball milling, cryogenic ball milling, and drum ball milling are sequentially performed, and the microstructure and high-temperature mechanical properties of the ODS steel are investigated. The microstructure observation revealed that the structure is stretched in the extrusion direction, even after the heat treatment. In addition, transmission electron microscopy (TEM) analysis confirmed the presence of oxide particles in the range of 5 to 10 nm. As a result of the room-temperature and high-temperature compression tests, the yield strengths were measured as 1430, 1388, 418, and 163 MPa at 25, 500, 700, and 900℃, respectively. Based on these results, the correlation between the microstructure and mechanical properties of ODS steel manufactured using the composite milling process is also discussed.

페라이트/마르텐사이트계 산화물분산강화강의 미세조직 및 샤르피 충격특성에 미치는 코발트 함량의 영향 (Effect of Cobalt Contents on the Microstructure and Charpy Impact Properties of Ferritic/martensitic Oxide Dispersion Strengthened Steel)

  • 권대현;노상훈;이정구
    • 한국분말재료학회지
    • /
    • 제27권4호
    • /
    • pp.311-317
    • /
    • 2020
  • In this study, the effects of Co content on the microstructure and Charpy impact properties of Fe-Cr-W ferritic/martensitic oxide dispersion strengthened (F/M ODS) steels are investigated. F/M ODS steels with 0-5 wt% Co are fabricated by mechanical alloying, followed by hot isostatic pressing, hot-rolling, and normalizing/tempering heat treatment. All the steels commonly exhibit two-phase microstructures consisting of ferrite and tempered martensite. The volume fraction of ferrite increases with the increase in the Co content, since the Co element considerably lowers the hardenability of the F/M ODS steel. Despite the lowest volume fraction of tempered martensite, the F/M ODS steel with 5 wt% Co shows the highest micro-Vickers hardness, owing to the solid solution-hardening effect of the alloyed Co. The high hardness of the steel improves the resistance to fracture initiation, thereby resulting in the enhanced fracture initiation energy in a Charpy impact test at - 40℃. Furthermore, the addition of Co suppresses the formation of coarse oxide inclusions in the F/M ODS steel, while simultaneously providing a high resistance to fracture propagation. Owing to these combined effects of Co, the Charpy impact energy of the F/M ODS steel increases gradually with the increase in the Co content.

Ni5Y 합금상이 형성된 Ni계 산화물 분산강화 아토마이징 분말의 밀링 거동 분석 (Analysis on Milling Behavior of Oxide Dispersion Strengthened Ni-based Atomizing Powder with Ni5Y Intermetallic Phase)

  • 박천웅;변종민;최원준;김영도
    • 한국분말재료학회지
    • /
    • 제26권2호
    • /
    • pp.101-106
    • /
    • 2019
  • Ni-based oxide dispersion strengthened (ODS) alloys have a higher usable temperature and better high-temperature mechanical properties than conventional superalloys. They are therefore being explored for applications in various fields such as those of aerospace and gas turbines. In general, ODS alloys are manufactured from alloy powders by mechanical alloying of element powders. However, our research team produces alloy powders in which the $Ni_5Y$ intermetallic phase is formed by an atomizing process. In this study, mechanical alloying was performed using a planetary mill to analyze the milling behavior of Ni-based oxide dispersions strengthened alloy powder in which the $Ni_5Y$ is the intermetallic phase. As the milling time increased, the $Ni_5Y$ intermetallic phase was refined. These results are confirmed by SEM and EPMA analysis on microstructure. In addition, it is confirmed that as the milling increased, the mechanical properties of Ni-based ODS alloy powder improve due to grain refinement by plastic deformation.

Study of the mechanical properties and effects of particles for oxide dispersion strengthened Zircaloy-4 via a 3D representative volume element model

  • Kim, Dong-Hyun;Hong, Jong-Dae;Kim, Hyochan;Kim, Jaeyong;Kim, Hak-Sung
    • Nuclear Engineering and Technology
    • /
    • 제54권5호
    • /
    • pp.1549-1559
    • /
    • 2022
  • As an accident tolerant fuel (ATF) concept, oxide dispersion strengthened Zircaloy-4 (ODS Zry-4) cladding has been developed to enhance the mechanical properties of cladding using laser processing technology. In this study, a simulation technique was established to investigate the mechanical properties and effects of Y2O3 particles for the ODS Zry-4. A 3D representative volume element (RVE) model was developed considering the parameters of the size, shape, distribution and volume fraction (VF) of the Y2O3 particles. From the 3D RVE model, the Young's modulus, coefficient of thermal expansion (CTE) and creep strain rate of the ODS Zry-4 were effectively calculated. It was observed that the VF of Y2O3 particles had a significant effect on the aforementioned mechanical properties. In addition, the predicted properties of ODS Zry-4 were applied to a simulation model to investigate cladding deformation under a transient condition. The ODS Zry-4 cladding showed better performance, such as a delay in large deformation compared to Zry-4 cladding, which was also found experimentally. Accordingly, it is expected that the simulation approach developed here can be efficiently employed to predict more properties and to provide useful information with which to improve ODS Zry-4.