Browse > Article
http://dx.doi.org/10.1016/j.net.2019.01.015

A novel approach for manufacturing oxide dispersion strengthened (ODS) steel cladding tubes using cold spray technology  

Maier, Benjamin (University of Wisconsin)
Lenling, Mia (University of Wisconsin)
Yeom, Hwasung (University of Wisconsin)
Johnson, Greg (University of Wisconsin)
Maloy, Stuart (Los Alamos National Laboratory)
Sridharan, Kumar (University of Wisconsin)
Publication Information
Nuclear Engineering and Technology / v.51, no.4, 2019 , pp. 1069-1074 More about this Journal
Abstract
A novel fabrication method of oxide dispersion strengthened (ODS) steel cladding tubes for advanced fast reactors has been investigated using the cold spray powder-based materials deposition process. Cold spraying has the potential advantage for rapidly fabricating ODS cladding tubes in comparison with the conventional multi-step extrusion process. A gas atomized spherical 14YWT (Fe-14%Cr, 3%W, 0.4%Ti, 0.2% Y, 0.01%O) powder was sprayed on a rotating cylindrical 6061-T6 aluminum mandrel using nitrogen as the propellant gas. The powder lacked the oxygen content needed to precipitate the nanoclusters in ODS steel, therefore this work was intended to serve as a proof-of-concept study to demonstrate that free-standing steel cladding tubes with prototypical ODS composition could be manufactured using the cold spray process. The spray process produced an approximately 1-mm thick, dense 14YWT deposit on the aluminum-alloy tube. After surface polishing of the 14YWT deposit to obtain desired cladding thickness and surface roughness, the aluminum-alloy mandrel was dissolved in an alkaline medium to leave behind a free-standing ODS tube. The as-fabricated cladding tube was annealed at $1000^{\circ}C$ for 1 h in an argon atmosphere to improve the overall mechanical properties of the cladding.
Keywords
Oxide dispersion strengthened steel; 14YWT powder; Cold spray process; ODS tube manufacturing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Ukai, M. Harada, H. Okada, M. Inoue, S. Nomura, S. Shikakura, T. Nishida, M. Fujiwara, K. Asabe, Tube manufacturing and mechanical properties of oxide dispersion strengthened ferritic steel, J. Nucl. Mater. 204 (1993) 74-80.   DOI
2 A. Alamo, H. Regle, G. Pons, J.L. Bechade, Microstructure and textures of ods ferritic alloys obtained by mechanical alloying, Mater. Sci. Forum 88-90 (1992) 183-190.
3 H.-G. Kim, I.-H. Kim, Y.-I. Jung, D.-J. Park, J.-H. Park, J.-H. Yang, Y.-H. Koo, Microstructure and mechanical characteristics of surface oxide dispersion-strengthened Zircaloy-4 cladding tube, Addit. Manuf. 22 (2018) 75-85.   DOI
4 V.K. Champagne, The Cold Spray Materials Deposition Process : Fundamentals and Applications, Woodhead, 2007.
5 H. Yeom, B. Maier, G. Johnson, T. Dabney, J. Walters, K. Sridharan, Development of cold spray process for oxidation-resistant FeCrAl and Mo diffusion barrier coatings on optimized $ZIRLO^{TM}$, J. Nucl. Mater. 507 (2018) 306-315.   DOI
6 B. Maier, H. Yeom, G. Johnson, T. Dabney, J. Walters, J. Romero, H. Shah, P. Xu, K. Sridharan, Development of cold spray coatings for accident-tolerant fuel cladding in light water reactors, JOM 70 (2018) 198-202.   DOI
7 G.R. Odette, Recent progress in developing and qualifying nanostructured ferritic alloys for advanced fission and fusion applications, JOM 66 (2014) 2427-2441.   DOI
8 S.V. Klinkov, V.F. Kosarev, M. Rein, Cold spray deposition: significance of particle impact phenomena, Aero. Sci. Technol. 9 (2005) 582-591.   DOI
9 Standard Test Method for Microindentation Hardness of Materials 1, ASTM Int. (n.d.).
10 D.T. Hoelzer, J. Bentley, M.A. Sokolov, M.K. Miller, G.R. Odette, M.J. Alinger, Influence of Particle Dispersions on the High-Temperature Strength of Ferritic Alloys, (n.d.).
11 Sample Dissolution, ASM Handb, Vol. 10, 1986, pp. 161-180.
12 M.K. Miller, K.F. Russell, D.T. Hoelzer, Characterization of precipitates in MA/ODS ferritic alloys, J. Nucl. Mater. 351 (2006) 261-268.   DOI
13 M.K. Miller, D.T. Hoelzer, E.A. Kenik, K.F. Russell, Stability of ferritic MA/ODS alloys at high temperatures, Intermetallics 13 (2005) 387-392.   DOI
14 H.L. Ding, R. Gao, T. Zhang, X.P. Wang, Q.F. Fang, C.S. Liu, Annealing effect on the microstructure and magnetic properties of 14%Cr-ODS ferritic steel, Fusion Eng. Des. 100 (2015) 371-377.   DOI
15 E.J. Pavlina, C.J. Van Tyne, Correlation of yield strength and tensile strength with hardness for steels, J. Mater. Eng. Perform. 17 (2008) 888-893.   DOI
16 K.L. Murty, I. Charit, Structural materials for Gen-IV nuclear reactors: challenges and opportunities, J. Nucl. Mater. 383 (2008) 189-195.   DOI
17 D.A. McClintock, M.A. Sokolov, D.T. Hoelzer, R.K. Nanstad, Mechanical properties of irradiated ODS-EUROFER and nanocluster strengthened 14YWT, J. Nucl. Mater. 392 (2009) 353-359.   DOI
18 A. Kohyama, A. Hishinuma, D.S. Gelles, R.L. Klueh, W. Dietz, K. Ehrlich, Low-activation ferritic and martensitic steels for fusion application, J. Nucl. Mater. 233-237 (1996) 138-147.   DOI
19 R.L. Klueh, J.P. Shingledecker, R.W. Swindeman, D.T. Hoelzer, Oxide dispersion-strengthened steels: a comparison of some commercial and experimental alloys, J. Nucl. Mater. 341 (2005) 103-114.   DOI
20 V. Sagaradze, V. Shalaev, V. Arbuzov, B. Goshchitskii, Y. Tian, W. Qun, S. Jiguang, Radiation resistance and thermal creep of ODS ferritic steels, J. Nucl. Mater. 295 (2001) 265-272.   DOI
21 S. Ukai, T. Yoshitake, S. Mizuta, Y. Matsudaira, S. Hagi, T. Kobayashi, Preliminary tube manufacturing of oxide dispersion strengthened ferritic steels with recrystallized structure, J. Nucl. Sci. Technol. 36 (1999) 710-712.   DOI