• Title/Summary/Keyword: Oxide Films

Search Result 2,382, Processing Time 0.032 seconds

Fabrication and Thermophysical Properties of Nickel-coated Aluminum Powder by Electroless Plating (비전해 방법을 이용한 니켈 코팅 알루미늄 분말 제조 및 열물성 평가)

  • Lee, Sanghyup;Lim, Jihwan;Noh, Kwanyoung;Yoon, Woongsup
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.4
    • /
    • pp.9-17
    • /
    • 2014
  • In this study, in order to improve the ignitability of high energy aluminum powder, natural oxide films (alumina) were chemically removed, and instead nickel coat was applied. We used an electroless plating for nickel coating and confirmed quantitatively and qualitatively a time-dependent degree of nickel coating through analysis of surface by SEM/EDS. We also conducted element analysis by XRD and thermal properties by TGA/DSC in air oxidizer environment. There results explained the ignition enhancement mechanism of the nickel-coated aluminum powder in air. The difference between coated and un-coated aluminum powder, the effectiveness of coated powder has better ignitability.

Reduced graphene oxide field-effect transistor for biomolecule detection and study of sensing mechanism

  • Kim, D.J.;Sohn, I.Y.;Kim, D.I.;Yoon, O.J.;Yang, C.W.;Lee, N.E.;Park, J.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.431-431
    • /
    • 2011
  • Graphene, two dimensional sheet of sp2-hybridized carbon, has attracted an enormous amount of interest due to excellent electrical, chemical and mechanical properties for the application of transparent conducting films, clean energy devices, field-effect transistors, optoelectronic devices and chemical sensors. Especially, graphene is promising candidate to detect the gas molecules and biomolecules due to the large specific surface area and signal-to-noise ratios. Despite of importance to the disease diagnosis, there are a few reports to demonstrate the graphene- and rGO-FET for biological sensors and the sensing mechanism are not fully understood. Here we describe scalable and facile fabrication of rGO-FET with the capability of label-free, ultrasensitive electrical detection of a cancer biomarker, prostate specific antigen/${\alpha}1$-antichymotrypsin (PSA-ACT) complex, in which the ultrathin rGO sensing channel was simply formed by a uniform self-assembly of two-dimensional rGO nanosheets on aminated pattern generated by inkjet printing. Sensing characteristics of rGO-FET immunosensor showed the highly precise, reliable, and linear shift in the Dirac point with the analyte concentration of PSA-ACT complex and extremely low detection limit as low as 1 fg/ml. We further analyzed the charge doping mechanism, which is the change in the charge carrier in the rGO channel varying by the concentration of biomolecules. Amenability of solution-based scalable fabrication and extremely high performance may enable rGO-FET device as a versatile multiplexed diagnostic biosensor for disease biomarkers.

  • PDF

Photo-Electrochemical Properties of $TiO_2$ Electrodes Prepared by Anodic Oxidation (양극산화에 의해 제조된 $TiO_2$ 전극의 광전기화학적 성질)

  • Yong Kook Choi;Soon Ki Lee;Q Won Choi;Jeong Sub Seong;Ki Hyung Chjo
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.12
    • /
    • pp.1010-1018
    • /
    • 1993
  • The titanium oxide thin films were prepared by anodic oxidation. The Photo-electrochemical properties of the electrodes were studied in 1 M NaOH solution. The flat band potentials of $TiO_2$ electrodes prepared by anodic oxidation showed around -0.8V and the values were shifted 0.2V to the positive potential direction that of single crystal $TiO_2$. Reduction potential of oxygen by cyclic voltammetry showed around -0.95V vs. SCE and these reactions were processed totally irreversible. The photocurrent of electrodes were showed shorter wavelength than that of single crystal $TiO_2$ and its current density decreased.

  • PDF

Thickness Measurement of Nanogate Oxide Films by Spectroscopic Ellipsometry (SE를 사용한 나노게이트 산화막의 두께측정)

  • 조현모;조용재;이윤우;이인원;김현종;김상열
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.40-41
    • /
    • 2002
  • 차세대 반도체 및 나노소자 산업에 대한 국제적 기술은 고밀도 직접화의 추세에 따라서 .게이트 산화막의 두께가 급속히 작아지는 추세이다. 지금까지 이산화규소(A1₂O₃)가 게이트 산화막으로 주로 사용되어 왔으나 점차 SiON 혹은 high k 박막으로 바뀌고 있다. 본 연구에서는 차세대 반도체 소자에 사용될 게이트 산화막 물질인 SiON 박막과 Al₂O₃박막에 대한 SE(Spectroscopic Ellipsometry)분석 모델을 확립하였고, SE 측정결과를 TEM, MEIS, XRR의 결과들과 비교하였다. SiON 박막의 굴절률 값은 Si₃N₄와 SiO₂가 물리적으로 혼합되어 있다고 가정하여 Bruggeman effective medium approximation을 사용하여 구하였다. 동일한 시료를 절단하여 TEM, MEIS, 그리고 XRR에 의하여 SiON 박막의 두께를 측정하였으며, 그 결과 SE와 XRR에 의해 얻어진 박막두께가 TEM과 MEIS의 결과 값보다 약 0.5 nm 크게 주어짐을 알 수 있었다(Table 1 참조). 본 연구결과는 비파괴적이며 비접촉식 측정방법인 SE가 2~4nm 두께의 초미세 SiON 박막의 두께와 N 농도의 상대적 값을 빠르고 쉽게 구할 수 있는 유용한 측정방법 임을 보여주었다. 기존의 게이트 산화물인 SiO₂를 대체할 후보 물질들 중의 하나인 A1₂O₃의 유전함수를 구하기 위하여 8 inch, p-type 실리콘 기판 위에 성장된 5 nm, 10 nm, 및 20 nm 두께의 A1₂O₃ 박막의 유전함수와 두께를 측정하였다. 이 시료들에 대한 SE data는 vacuum-UV spectroscopic ellipsometer를 사용하여 세 개의 입사각에서 0.75 eV에서 8.75 eV까지 0.05 eV 간격으로 측정되었다. A1₂O₃ 박막의 유전함수와 두께를 얻기 위하여 공기층/A1₂O₃ 박막/Si 기판으로 구성된 3상계 모델을 사용하였다. Si 기판에 대한 복소 유전함수는 문헌상의 값(1)을 사용하였고, A1₂O₃ 박막의 유전함수는 5개의 미지상수를 갖는 Tauc- Lorentz(TL) 분산함수(2)를 사용하였다. A1₂O₃ 박막의 경우 두께가 증가함에 따라서 굴절률이 커짐을 알 수 있었다.

  • PDF

Correlation between Oxygen Related Bonds and Defects Formation in ZnO Thin Films by Using X-ray Diffraction and X-ray Photoelectron Spectroscopy (XRD와 XPS를 사용한 산화아연 박막의 결함형성과 산소연관 결합사이의 상관성)

  • Oh, Teresa
    • Korean Journal of Materials Research
    • /
    • v.23 no.10
    • /
    • pp.580-585
    • /
    • 2013
  • To observe the formation of defects at the interface between an oxide semiconductor and $SiO_2$, ZnO was prepared on $SiO_2$ with various oxygen gas flow rates by RF magnetron sputtering deposition. The crystallinity of ZnO depends on the characteristic of the surface of the substrate. The crystallinity of ZnO on a Si wafer increased due to the activation of ionic interactions after an annealing process, whereas that of ZnO on $SiO_2$ changed due to the various types of defects which had formed as a result of the deposition conditions and the annealing process. To observe the chemical shift to understand of defect deformations at the interface between the ZnO and $SiO_2$, the O 1s electron spectra were convoluted into three sub-peaks by a Gaussian fitting. The O 1s electron spectra consisted of three peaks as metal oxygen (at 530.5 eV), $O^{2-}$ ions in an oxygen-deficient region (at 531.66 eV) and OH bonding (at 532.5 eV). In view of the crystallinity from the peak (103) in the XRD pattern, the metal oxygen increased with a decrease in the crystallinity. However, the low FWHM (full width at half maximum) at the (103) plane caused by the high crystallinity depended on the increment of the oxygen vacancies at 531.66 eV due to the generation of $O^{2-}$ ions in the oxygen-deficient region formed by thermal activation energy.

Resistive Switching Effect of the $In_2O_3$ Nanoparticles on Monolayered Graphene for Flexible Hybrid Memory Device

  • Lee, Dong Uk;Kim, Dongwook;Oh, Gyujin;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.396-396
    • /
    • 2013
  • The resistive random access memory (ReRAM) has several advantages to apply next generation non-volatile memory device, because of fast switching time, long retentions, and large memory windows. The high mobility of monolayered graphene showed several possibilities for scale down and electrical property enhancement of memory device. In this study, the monolayered graphene grown by chemical vapor deposition was transferred to $SiO_2$ (100 nm)/Si substrate and glass by using PMMA coating method. For formation of metal-oxide nanoparticles, we used a chemical reaction between metal films and polyamic acid layer. The 50-nm thick BPDA-PDA polyamic acid layer was coated on the graphene layer. Through soft baking at $125^{\circ}C$ or 30 min, solvent in polyimide layer was removed. Then, 5-nm-thick indium layer was deposited by using thermal evaporator at room temperature. And then, the second polyimide layer was coated on the indium thin film. After remove solvent and open bottom graphene layer, the samples were annealed at $400^{\circ}C$ or 1 hr by using furnace in $N_2$ ambient. The average diameter and density of nanoparticle were depending on annealing temperature and times. During annealing process, the metal and oxygen ions combined to create $In_2O_3$ nanoparticle in the polyimide layer. The electrical properties of $In_2O_3$ nanoparticle ReRAM such as current-voltage curve, operation speed and retention discussed for applictions of transparent and flexible hybrid ReRAM device.

  • PDF

The Effect of Transparent Conductive Oxide Films on the Efficiency of CIGS Thin Film Solar Cell

  • Kim, Min-Yeong;Kim, Gi-Rim;Kim, Jong-Wan;Son, Gyeong-Tae;Lee, Jae-Hyeong;Im, Dong-Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.705-705
    • /
    • 2013
  • CIGS 박막태양 전지는 I-III-VI Chalcopyrite 결정구조를 가진 화합물 반도체 태양전지로 인위적인 밴드갭 조작을 통하여 효율 향상에 용이하다. 4원소 화합물인 CIGS 광흡수층의 대표적인제조 방법으로는 co-evaporation 공정법이 있다. 동시 증발법은 CIGS 결정을 최적화하기 위하여 박막이 증착되는 동안 기판의 온도를 3단계로 변화시켜주는 3-stage 공정을 통하여 제작된다. 일반적으로 CIGS 박막태양전지는 전면전극으로 투명전도막이 사용되며 높은 광투과성과 전기전도성을 가져야 한다. 투명전도막의 광학적, 전기적 특성은 CIGS 박막태양전지의 효율에 영향을 미치기 때문에 최적화된 조건이 요구된다. 본 연구에서는 CIGS 광흡수층은 Ga/(In+Ga)=0.31, Cu/(In+Ga)=0.86으로 최적화 시켰으며, 투명전도막은 Ga이 도핑된 ZnO박막을 RF 마그네트론 스퍼터링법을 이용하여 증착하였다. CIGS 박막 태양전지 직렬저항 성분인 투명 전도막의 비저항이 $4.46{\times}{\square}10{\square}-3{\square}$(${\Omega}$-cm)에서 $9.3{\times}{\square}0{\square}-4{\square}$(${\Omega}$-cm) 으로 변화함에 따라 Efficiency가 9.67%에서 16.47%으로 증가하였으며, Voc가 508 mV에서 596 mV으로, Jsc가 29.27 mA/$cm^2$에서 37.84 mA/$cm^2$으로, FF factor가 64.99%에서 72.96%로 증가하였다. 이에 따른 투명 전도막의 전기적, 광학적 특성을 통해 CIGS 박막태양전지에 미치는 영향에 대해 조사하였다.

  • PDF

The Processing and Characterization of Sol-Gel Derived Ferroelectric PMN Powders and Thin Films (졸-겔법에 의한 강유전성 PMN 분말 및 박막의 제조와 특성)

  • Hwang, Jin-Myeong;Jang, Jun-Yeong;Eun, Hui-Tae
    • Korean Journal of Materials Research
    • /
    • v.8 no.12
    • /
    • pp.1138-1145
    • /
    • 1998
  • The sliding wear behavior of Ni-base hardfacing alloy, Deloro 50, was investigated at the contact stresses of 15ksi and 30ksi under the various wear environments. In air at room temperature, Deloro 50 showed lower wear resistance than Stellite 6 even at 15ksi due to the occurrence of severe adhesive wear. This seems to be caused by the lower hardness and work- hardening rate of Deloro 50 than those of Stellite 6. In water at room temperature, Deloro 50 showed as good wear resistance as Stellite 6 at 15ksi. It was considered to be due to that water could effectively prevent metal to metal contact through contacting asperities. However, Deloro 50 showed severe adhesive wear at 30ksi in water at room temperature. It seems to be that the water could not suppress adhesion wear at 30ksi. At $300^{\circ}C$ in air, Deloro 50 exhibited higher wear resistance than Stellite 6 even at 30ksi. It was considered that the oxide glaze layers formed on wear surface during sliding, effectively prevented direct metal-to-metal contacts.

  • PDF

Diffusion Behaviors and Electrical Properties in the In-Ga-Zn-O Thin Film Deposited by Radio-frequency Reactive Magnetron Sputtering

  • Lee, Seok Ryeol;Choi, Jae Ha;Lee, Ho Seong
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.6
    • /
    • pp.322-328
    • /
    • 2015
  • We investigated the diffusion behaviors, electrical properties, microstructures, and composition of In-Ga-Zn-O (IGZO) oxide thin films deposited by radio frequency reactive magnetron sputtering with increasing annealing temperatures. The samples were deposited at room temperature and then annealed at 300, 400, 500, 600 and $700^{\circ}C$ in air ambient for 2 h. According to the results of time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy, no diffusion of In, Ga, and Zn components were observed at 300, 400, 500, $600^{\circ}C$, but there was a diffusion at $700^{\circ}C$. However, for the sample annealed at $700^{\circ}C$, considerable diffusion occurred. Especially, the concentration of In and Ga components were similar at the IGZO thin film but were decreased near the interface between the IGZO and glass substrate, while the concentration of Zn was decreased at the IGZO thin film and some Zn were partially diffused into the glass substrate. The high-resolution transmission electron microscopy results showed that a phase change at the interface between IGZO film and glass substrate began to occur at $500^{\circ}C$ and an unidentified crystalline phase was observed at the interface between IGZO film and glass substrate due to a rapid change in composition of In, Ga and Zn at $700^{\circ}C$. The best values of electron mobility of $15.5cm^2/V{\cdot}s$ and resistivity of $0.21{\Omega}cm$ were obtained from the sample annealed at $600^{\circ}C$.

ALD-assisted Hybrid Processes for improved Corrosion Resistance of Hard coatings

  • Wan, Zhixin;Kwon, Se-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.105-105
    • /
    • 2016
  • Recently, high power impulse magnetron sputtering (HIPIMS) has attracted considerable attentions due to its high potential for industrial applications. By pulsing the sputtering target with high power density and short duration pulses, a high plasma density and high ionization of the sputtered species can be obtained. HIPIMS has exhibited several merits such as increased coating density, good adhesion, microparticle-free and smooth surface, which make the HIPIMS technique desirable for synthesizing hard coatings. However, hard coatings present intrinsic defects (columnar structures, pinholes, pores, discontinuities) which can affect the corrosion behavior, especially when substrates are active alloys like steel or in a wear-corrosion process. Atomic layer deposition (ALD), a CVD derived method with a broad spectrum of applications, has shown great potential for corrosion protection of high-precision metallic parts or systems. In ALD deposition, the growth proceeds through cyclic repetition of self-limiting surface reactions, which leads to the thin films possess high quality, low defect density, uniformity, low-temperature processing and exquisite thickness control. These merits make ALD an ideal candidate for the fabrication of excellent oxide barrier layer which can block the pinhole and other defects left in the coating structure to improve the corrosion protection of hard coatings. In this work, CrN/Al2O3/CrN multilayered coatings were synthesized by a hybrid process of HIPIMS and ALD techniques, aiming to improve the CrN hard coating properties. The influence of the Al2O3 interlayer addition, the thickness and intercalation position of the Al2O3 layer in the coatings on the microstructure, surface roughness, mechanical properties and corrosion behaviors were investigated. The results indicated that the dense Al2O3 interlayer addition by ALD lead to a significant decrease of the average grain size and surface roughness and greatly improved the mechanical properties and corrosion resistance of the CrN coatings. The thickness increase of the Al2O3 layer and intercalation position change to near the coating surface resulted in improved mechanical properties and corrosion resistance. The mechanism can be explained by that the dense Al2O3 interlayer acted as an excellent barrier for dislocation motion and diffusion of the corrosive substance.

  • PDF