Photo-Electrochemical Properties of $TiO_2$ Electrodes Prepared by Anodic Oxidation

양극산화에 의해 제조된 $TiO_2$ 전극의 광전기화학적 성질

  • Yong Kook Choi (Department of Chemistry, Chonnam National University) ;
  • Soon Ki Lee (Department of Chemistry, Chonnam National University) ;
  • Q Won Choi (Department of Chemsitry, Seoul National University) ;
  • Jeong Sub Seong (Department of Chemistry, Chonnam National University) ;
  • Ki Hyung Chjo (Department of Chemistry, Chonnam National University)
  • 최용국 (전남대학교 자연과학대학 화학과) ;
  • 이순기 (전남대학교 자연과학대학 화학과) ;
  • 최규원 (서울대학교 자연과학대학 화학과) ;
  • 성정섭 (전남대학교 자연과학대학 화학과) ;
  • 조기형 (전남대학교 자연과학대학 화학과)
  • Published : 1993.12.20

Abstract

The titanium oxide thin films were prepared by anodic oxidation. The Photo-electrochemical properties of the electrodes were studied in 1 M NaOH solution. The flat band potentials of $TiO_2$ electrodes prepared by anodic oxidation showed around -0.8V and the values were shifted 0.2V to the positive potential direction that of single crystal $TiO_2$. Reduction potential of oxygen by cyclic voltammetry showed around -0.95V vs. SCE and these reactions were processed totally irreversible. The photocurrent of electrodes were showed shorter wavelength than that of single crystal $TiO_2$ and its current density decreased.

티타늄 금속판을 양극산화하여 제조한 $TiO_2$ 박막을 전극으로 사용하여 1M NaOH 용액에서 광전기화학적 성질을 연구하였다. $TiO_2$ 전극들의 flatband potential은 대략 -0.8V 정도로 이들 값은 단결정 $TiO_2$에서 보다 0.2V만큼 양전위 방향으로 이동되어 나타났다. 순환 전압 전류법에 의한 산소의 환원전위는 SCE에 대해 -0.95V 근처에서 나타났으며, 반응은 전체적으로 비가역적으로 진행되었다. 또한 전극의 광전류는 단결정 $TiO_2$에서 보다 더 단파장에서 나타났으며 전류밀도는 감소되었다.

Keywords

References

  1. C. R. Acad. Sci. v.9 E. Becquerel
  2. Bell Syst. Tech. J. v.34 W. H. Brattain;C. G. B. Garrett
  3. Nature v.238 A. Fuijshima;K. Honda
  4. Proc. Natl. Acad. Sci. U.S.A. v.72 M. S. Wrighton;D. S. Ginley;P. T. Wolczanski;A. B. Elli;D. L. Morse;A. Linz
  5. J. Electrochern. Soc. v.122 K. L. Hardee;A. J. Bard
  6. Nature v.257 A. J. Nozik
  7. Mater. Res. Bull. v.10 J. G. Mavroides;D. I. Tchernev;J. A. Kafalas;D. F. Kolesar
  8. J. Am. Chem. Soc. v.98 M. S. Wrighton;A. B. Ellis;P. T. Wolczanski;D. L. Morse
  9. Appl. Phys. Lett. v.28 J. G. Mavroides;J. A. Kafalas;D. F. Koelsar
  10. J. Phys. Chem. v.80 A. B. Ellis;S. W. Kaiser;M. S. Wrighton
  11. J. Electrochern. Soc. v.123 J. H. Kennedy;K. W. Frese
  12. J. Am. Chem. Soc. v.98 M. S. Wrighton;D. L. Morse;A. B. Ellis;D. S. G. Inley;H. B. Abrahamson
  13. J. Chem. Phys. v.32 R. Williams
  14. J. Am. Chem. Soc. v.98 A. B. Ellis;S. W. Kaiser;M. S. Wrighton
  15. Energy Convers. v.25 W. W. Anderson;Y. G. Chai
  16. Ber. Bunsenges. Phys. Chem. v.76 R. A. L. Vanden Berghe;W. P. Gomes
  17. Electrochim. Acta v.20 H. Yoneyama;H. Sakamoto;H. Tamura
  18. Appl. Phys. Lett. v.29 A. J. Nozik
  19. J. Appl. Phys. v.47 R. M. Candea;M. Kastner;R. Goodman;N. Hickok
  20. Electrochim. Acta v.27 Y. Matsumoto;T. Shimizu;E. Sato
  21. Int. J. Hydrogen Energy v.8 K. J. Harting;H. Getoff
  22. Chem. Phys. Lett. v.100 D. Miller
  23. Appl. Phys. Lett. v.30 H. Morisaki;M. Hariya;K. Yazawa
  24. Appl. Phys. Lett. v.35 F. Decker;J. F. Juliano;M. Abramovich
  25. Appl. Phys. Lett. v.39 W. T. Kim;C. H. Choe;Q. W. Choi
  26. J. Phys. Chem. v.86 B. H. Chen;J. M. White
  27. J. Phys. Chem. v.90 N. Zaffrezic-Renault;P. Pichat;A. Foissy;R. Mercier
  28. J. Electroanal. Chem. v.237 D. Tafalla;P. Salvador
  29. J. Phys. Chem. v.89 D. Niel Furlong;D. Wells
  30. J. Phys. Chem. v.84 K. Kong;H. Yoneyama;H. Tamura
  31. J. Phys. Chem. v.92 H. Al-Ekabi;N. Serpone
  32. The Am. Soc. of Mechanical Engineers Solar Engineering-1991 J. Pacheco;M. Prairie;L. Yellowhorse
  33. J. Electrochem. Soc. v.124 A. K. Ghosh;H. P. Maruska
  34. J. Electrochern. Soc. v.139 Y. K. Choi;S. S. Seo;K. H. Chjo;Q. W. Choi;S. M. Park
  35. J. Am. Chem. Soc. v.97 S. N. Frank;A. J. Bard
  36. J. Electrochem. Sac. v.125 R. N. Noufi;P. A. Kohl;S. N. Frank;A. J. Bard
  37. Electrochim. Acta v.25 B. Parkinson;F. Decker;J. F. Juliano;M. Abramovich;H. C. Chagas
  38. J. Korean Chem. Soc. v.18 Q. W. Choi;C. H. Choi;K. H. Chjo;Y. K. Choi
  39. J. Electrochem. Soc. v.125 C. K. Dyer;J. S. L. Leach
  40. Electrochem. Acta v.15 J. Yahalom ;T. P. Hcan
  41. Electrochem. Acta v.16 J. Zahari;J. Yahalom
  42. Nature v.183 D. M. Lakhlani;L. L. Shreir
  43. Solar Energy Conversion-A Photoelectrochemical Approach Yu. V. Pleskov
  44. Electrochemical Methods A. J. Bard;L. R. Faulkner
  45. J. Electrochem. Soc. v.127 J. F. Juliano;F. Decker;R. Brenzikofer;M. Abramovich
  46. CRC Handbook of Chemistry and Physics (71st edition) D. R. Lide;Editor
  47. J. Korean Chem. Soc. v.37 Y. K. Choi;K. H. Chjo;Q. W. Choi;J. K. Oh;J. S. Seong
  48. Appl. Phys. v.48 M. A. Butler