• Title/Summary/Keyword: Oxide Film

Search Result 3,032, Processing Time 0.033 seconds

Silicon oxide and poly-Si film simultaneously formed by excimer laser (엑시머 레이저를 이용하여 동시에 형성된 실리콘 산화막과 다결정 실리콘 박막)

  • 박철민;민병혁;전재홍;유준석;최홍석;한민구
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.1
    • /
    • pp.35-40
    • /
    • 1997
  • A new method to form the gate oxide and recrystllize the polycrystalline silicon (poly-Si) active layer simultaneously is proposed and fabricated successfully. During te irradiation of excimer laser, the poly-Si film is recrystallized, while the oxygen ion impurities injected into the amorphous silicon(a-Si) film are activated by laser energy and react with silicon atoms to form SiO2. We investigated the characteristics of the sample fabricated by proposed method using AES, TEM, AFM. The electrical performance of oxide was verified by ramp up voltage method. Our experimental results show that a high quality oxide, a pol-Si film with fine grain, and a smooth and clean interface between oxide and poly-Si film have been successfully obtained by the proposed fabrication method. The interface roughness of oxide/poly-Si fabricated by new method is superior to film by conventional fabrication os that the proposed method may improve the performance of poly-Si TFTs.

  • PDF

Chemical Structure Analysis on the ONO Superthin Film by Second Derivative AES Spectra (2차 미분 AES 스펙트럼에 의한 ONO 초박막의 화학구조 분석)

  • 이상은;윤성필;김선주;서광열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.79-82
    • /
    • 1998
  • Film characteristics of thin ONO dielectric layers for MONOS(metal-oxide-nitride-oxide-semiconductor) EEPRM was investigated by AES and AFM. Second derivative spectra of AES Si LVV overlapping peak provided useful information for chemical state analysis of superthin film. The ONO films with dimension of tunneling oxide 24${\AA}$, nitride 33${\AA}$, and blocking oxide 40${\AA}$ were fabricated. During deposition of the LPCVD nitride films on tunneling oxide, this thin oxide was nitrized. When the blocking oxide were deposited on the nitride film, the oxygen not only oxidized the nitride surface, but diffused through the nitride. The results of ONO film analysis exhibits that it is made up of SiO$_2$(blocking oxide)/O-rich SiON(interface/N-rich SiON(nitride)/-rich SiON(interface)/N-rich SiON(nitride)/O-rich SiON(tunneling oxide).

  • PDF

Fabrication and Characterization of Zinc-Tin-Oxide Thin Film Transistors Prepared through RF-Sputtering

  • Do, Woori;Choi, Jeong-Wan;Ko, Myeong-Hee;Kim, Eui-Hyeon;Hwang, Jin-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.207.2-207.2
    • /
    • 2013
  • Oxide-based thin film transistors have been attempted as powerful candidates for driving circuits for active-matrix organic light-emitting diodes and transparent electronics. The oxide TFTs are based on the amorphous multi-component oxides involving zinc, indium, and/or tin elements as main cation sources. The current work employed RF sputtering in order to deposit zinc-tin oxide thin films applicable to transparent oxide thin film transistors. The deposited thin film was characterized and probed in terms of materials and devices. The physical/chemical characterizations were performed using X-ray diffraction, Atomic Force Microscopy, Spectroscopic Ellipsometry, and X-ray Photoelectron Spectroscopy. The thin film transistors were fabricated using a bottom-gated structure where thermally-grown silicon oxide layers were applied as gate-dielectric materials. The inherent properties of oxide thin films are combined with the corresponding device performances with the aim to fabricating the multi-component oxide thin films being optimized towards transparent electronics.

  • PDF

Characterization of gate oxide breakdown in junctionless amorphous InGaZnO thin film transistors (무접합 비정질 InGaZnO 박막 트랜지스터의 게이트 산화층 항복 특성)

  • Chang, Yoo Jin;Seo, Jin Hyung;Park, Jong Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.1
    • /
    • pp.117-124
    • /
    • 2018
  • Junctionless amorphous InGaZnO thin film transistors with different film thickness have been fabricated. Their device performance parameters were extracted and gate oxide breakdown voltages were analyzed with different film thickness. The device performances were enhanced with increase of film thickness but the gate oxide breakdown voltages were decreased. The device performances were enhanced with increase of temperatures but the gate oxide breakdown voltages were decreased due to the increased drain current. The drain current under illumination was increased due to photo-excited electron-hole pair generation but the gate oxide breakdown voltages were decreased. The reason for decreased breakdown voltage with increase of film thickness, operation temperature and light intensity was due to the increased number of channel electrons and more injection into the gate oxide layer. One should decide the gate oxide thickness with considering the film thickness and operating temperature when one decides to replace the junctionless amorphous InGaZnO thin film transistors as BEOL transistors.

A Study on the Infrared Radiation Properties of Anodized Aluminum (양극산화된 알루미늄의 적외선 복사특성 연구)

  • 강병철;최정진;김기호
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.3
    • /
    • pp.149-157
    • /
    • 2002
  • Spectral emissivity depends on the surface conditions of the materials. The mechanisms that affect the spectral emissivity in anodic oxide films on aluminum were investigated. The aluminum specimens were anodized in a sulfuric acid solution and the thickness of the resulting oxide film formed changed with the anodizing time. FT-IR spectrum analysis identified the anodic oxide film as boehmite ($Al_2$$O_3$.$H_2$O). Both the infrared emisivity and reflectivity of the anodized aluminum were affected by the structure of the anodic oxide film because Al-OH and Al-O-Al have a pronounced absorption band in the infrared region of the spectrum. The presence of an anodic oxide film on aluminum caused a rapid drop in the infrared reflectivity. An aluminum surface in the clean state had an emissivity of approximately 0.2. However, the infrared emissivity rapidly increased to 0.91 as the thickness of the anodic oxide film increased.

Surface Modification of Titanium Based Biomaterials by Ion Beam

  • Liu, Xianghuai;Huang, Nan;Yang, Ping;Cai, Guanjun;Chen, Yuanru;Zheng, Zhi hong;Zhou, Zhuyao
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S2
    • /
    • pp.8-19
    • /
    • 1995
  • Ion beam enhanced deopsition(IBED) was adopted to synthesize biocompatible titanium oxide film. Structure characteristics of titanium oxide film were investigated by RBS, AES and XRD. The blood compatibility of the titanium oxide film was studied by measurements of blood clotting time and platelet adhesion. The results show that the anticoagulation property of titanium oxide film is improved significantly. The mechanism of anticoagulation of the titanium oxide film was discussed.

  • PDF

Hafnium Oxide Nano-Film Deposited on Poly-Si by Atomic Layer Deposition

  • Wei, Hung-Wen;Ting, Hung-Che;Chang, Chung-Shu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.496-498
    • /
    • 2005
  • We reported that high dielectric hafnium oxide nano-film deposited by thermal atomic layer deposition on the poly-silicon film (poly-Si). The poly -Si film was produced by plasma enhanced chemical vapor deposition and excimer laser annealing. We used the hafniu m chloride ($HfCl_4$) and water as the precursors and analyzed the hafnium oxide film by transmission electron microscope and secondary ion mass spectrometer. Hafnium oxide produced by the ALD method showed very good coverage on the rough surface of poly-Si film. While deposited with 200 cycles, these hafnium oxide films revealed a relatively smooth surface and good uniformity, but the cumulative roughness produced by the incomplete reaction was apparent when the amount of deposition cycle increased to 600 cycles.

  • PDF

Investigation of the Growth Kinetics of Al Oxide Film in Sulfuric Acid Solution (황산 용액에서 Al 산화피막의 생성과정 연구)

  • Chon, Jung-Kyoon;Kim, Youn-Kyoo
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.4
    • /
    • pp.380-386
    • /
    • 2010
  • We have investigated the growth kinetics of Al oxide film by anodization in sulfuric acid solution and the electronic properties of this film using electrochemical impedance spectroscopy. Al oxide film consisted $Al_2O_3$ was grown based on the point defect model and shown the eclctronic properties of n-type semiconductor.

Hydrogen sensing of Nano thin film and Nanowire structured cupric oxide deposited on SWNTs substrate: A comparison

  • Hoa, Nguyen Duc;Quy, Nguyen Van;O, Dong-Hun;Wei, Li;Jeong, Hyeok;Kim, Do-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.52.1-52.1
    • /
    • 2009
  • Cupric oxide (CuO) is a p-type semiconductor with band gap of ~1.7 eV and reported to be suitable for catalysis, lithium-copper oxide electrochemical cells, and gas sensors applications. The nanoparticles, plates and nanowires of CuO were found sensing to NO2, H2S and CO. In this work, we report about the comparison about hydrogen sensing of nano thin film and nanowires structured CuO deposited on single-walled carbon nanotubes (SWNTs). The thin film and nanowires are synthesized by deposition of Cu on different substrate followed by oxidation process. Nano thin films of CuO are deposited on thermally oxidized silicon substrate, whereas nanowires are synthesized by using a porous thin film of SWNTs as substrate. The hydrogen sensing properties of synthesized materials are investigated. The results showed that nanowires cupric oxide deposited on SWNTs showed higher sensitivity to hydrogen than those of nano thin film CuO did.

  • PDF

New Fabrication method of Planar Micro Gas Sesnor Array (집적도를 높인 평면형 가스감지소자 어레이 제작기술)

  • 정완영
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.727-730
    • /
    • 2003
  • Thin tin oxide film with nano-size particle was prepared on silicon substrate by hydrothermal synthetic method and successive sol-gel spin coating method. The fabrication method of tin oxide film with ultrafine nano-size crystalline structure was tried to be applied to fabrication of micro gas sensor array on silicon substrate. The tin oxide film on silicon substrate was well patterned by chemical etching upto 5${\mu}{\textrm}{m}$width and showed very uniform flatness. The tin oxide film preparation method and patterning method were successfully applied to newly proposed 2-dimensional micro sensor fabrication.

  • PDF