• Title/Summary/Keyword: Oxide Deposition

Search Result 1,530, Processing Time 0.031 seconds

Electrical Characteristics of SiO2/4H-SiC Metal-oxide-semiconductor Capacitors with Low-temperature Atomic Layer Deposited SiO2

  • Jo, Yoo Jin;Moon, Jeong Hyun;Seok, Ogyun;Bahng, Wook;Park, Tae Joo;Ha, Min-Woo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.2
    • /
    • pp.265-270
    • /
    • 2017
  • 4H-SiC has attracted attention for high-power and high-temperature metal-oxide-semiconductor field-effect transistors (MOSFETs) for industrial and automotive applications. The gate oxide in the 4H-SiC MOS system is important for switching operations. Above $1000^{\circ}C$, thermal oxidation initiates $SiO_2$ layer formation on SiC; this is one advantage of 4H-SiC compared with other wide band-gap materials. However, if post-deposition annealing is not applied, thermally grown $SiO_2$ on 4H-SiC is limited by high oxide charges due to carbon clusters at the $SiC/SiO_2$ interface and near-interface states in $SiO_2$; this can be resolved via low-temperature deposition. In this study, low-temperature $SiO_2$ deposition on a Si substrate was optimized for $SiO_2/4H-SiC$ MOS capacitor fabrication; oxide formation proceeded without the need for post-deposition annealing. The $SiO_2/4H-SiC$ MOS capacitor samples demonstrated stable capacitance-voltage (C-V) characteristics, low voltage hysteresis, and a high breakdown field. Optimization of the treatment process is expected to further decrease the effective oxide charge density.

The Characteristics of Solar Thermochemical Methane Reforming using Ferrite-based Metal Oxides (페라이트계 금속산화물을 이용한 태양 열화학 메탄 개질 특성)

  • Cha, Kwang-Seo;Lee, Dong-Hee;Jo, Won-Jun;Lee, Young-Seok;Kim, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.45-48
    • /
    • 2007
  • Thermochemical 2-step methane reforming, involving the reduction of metal oxide with methane to produce syn-gas and the oxidation of the reduced metal oxide with water to produce pure hydrogen, was investigated on ferrite-based metal oxide mediums and $WO_{3}/ZrO_{2}$. Thermochemical 2-step methane reforming were accomplished at 900 $^{\circ}C$(syn-gas production step) and 800 $^{\circ}C$(water-splitting step). In syn-gas production step, it appeared carbon deposition on metal oxides with increasing react ion time. Various mediums showed the different starting point of carbon deposition each other. To minimize the carbon deposition, the reaction time was controlled before the starting point of carbon deposition. As a result, $CO_{x}$ were not evolved in water-splitting step, Among the various metal oxides, $Mn-ferrite/ZrO_{2}$ showed high reactivity, proper $H_{2}/CO$ ratio, high selectivity of undesired $CO_{2}$ and high evolution of $H_{2}$.

  • PDF

Deposition of Electrolyte for Intermediate Temperature Solid Oxide Fuel Cells by Combined Thin Film Deposition Techniques (복합 박막 증착 공정을 이용한 중저온 고체산화물 연료전지용 전해질 증착)

  • Ha, Seungbum;Jee, Sanghoon;Tanveer, Waqas Hassan;Lee, Yoonho;Cha, Suk Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.84.1-84.1
    • /
    • 2011
  • Typical solid oxide fuel cells (SOFCs) have limited applications because they operate at high temperature due to low ionic conductivity of electrolyte. Thin film solid oxide fuel cell with yttria stabilized zirconia (YSZ) electrolyte is developed to decrease operating temperature. Pt/YSZ/Pt thin film SOFC was fabricated on anodic aluminum oxide (AAO). The crystalline structure of YSZ electrolyte by sputter is heavily depends on the roughness of porous Pt layer, which results in pinholes. To deposit YSZ electrolyte without pinholes and electrical shortage, it is necessary to deposit smoother and denser layer between Pt anode layer and YSZ layer by sputter. Atomic Layer Deposition (ALD) technique is used to deposit pre-YSZ layer, and it improved electrolyte quality. 300nm thick Bi-layered YSZ electrolyte was successfully deposited without electrical shortage.

  • PDF

Abnormal Detection in 3D-NAND Dielectrics Deposition Equipment Using Photo Diagnostic Sensor

  • Kang, Dae Won;Baek, Jae Keun;Hong, Sang Jeen
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.74-84
    • /
    • 2022
  • As the semiconductor industry develops, the difficulty of newly required process technology becomes difficult, and the importance of production yield and product reliability increases. As an effort to minimize yield loss in the manufacturing process, interests in the process defect process for facility diagnosis and defect identification are continuously increasing. This research observed the plasma condition changes in the multi oxide/nitride layer deposition (MOLD) process, which is one of the 3D-NAND manufacturing processes through optical emission spectroscopy (OES) and monitored the result of whether the change in plasma characteristics generated in repeated deposition of oxide film and nitride film could directly affect the film. Based on these results, it was confirmed that if a change over a certain period occurs, a change in the plasma characteristics was detected. The change may affect the quality of oxide film, such as the film thickness as well as the interfacial surface roughness when the oxide and nitride thin film deposited by plasma enhenced chemical vapor deposition (PECVD) method.

Annealing Effect on the Electrical Characteristics for Oxide Semiconductor ITO_{(n)}/Si_{(p)}$ Solar Cell (산화물 반도체 ITO_{(n)}/Si_{(p)}$ 태양전지의 전기적 특성에 미치는 열처리 효과)

  • 김용운
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.3
    • /
    • pp.64-68
    • /
    • 2003
  • ITO_{(n)}/Si_{(p)}$ solar cell is fabricated by vaccum deposition method under the resistance heating with substrate temperature kept about 200[$^{\circ}C$] and than their properties are investigated. The maximum output of fabricated solar cell is obtained when the composition of the thin film is consisted of indium oxide 91[mole %] and tin oxide 9(mole %). The solar cell electrical charateristics can be improved by annealing but are deteriorated at temperature above 600[$^{\circ}C$] for longer than 15[min].

Application of Atomic Layer Deposition to Solid Oxide Fuel Cells

  • Kim, Eui-Hyun;Ko, Myeong-Hee;Hwang, Hee-Soo;Hwang, Jin-ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.478.2-478.2
    • /
    • 2014
  • Atomic layer deposition (ALD) provides self-limiting processes based on chemisorption-based reactions. Such unique features allow for superior step coverage, atomic-scale control in thickness, and surface-dependent reaction controls. Furthermore, the surface-limited deposition enables the artificial deposition of oxide and/or metallic materials onto the porous systems as long as the supply is guaranteed in terms of time in providing reactant species and removing the byproducts and redundant reactants. The unique feature of atomic layer deposition is applied to solid oxide fuel cells whose incorporates two porous cathode and anode compartments in addition to the ionic electrolyte. Specific materials are deposited to the surface sites of porous electrodes, with the aim to controlling the triple phase boundaries crucial for the optimized SOFC performances. The effect of ALD on the SOFC performance is characterized using current-voltage characteristics in addition to frequency-dependent impedance spectroscopy. The pros and cons of ALD-controlled SOFCs are discussed toward high-performance SOFC systems.

  • PDF

Characteristics of Vanadium Oxide Grown by Atomic Layer Deposition for Hole Carrier Selective Contacts Si Solar Cells (실리콘 전하선택접합 태양전지 적용을 위한 원자층 증착법으로 증착된 VOx 박막의 특성)

  • Park, Jihye;Chang, Hyo Sik
    • Korean Journal of Materials Research
    • /
    • v.30 no.12
    • /
    • pp.660-665
    • /
    • 2020
  • Silicon heterojunction solar cells can achieve high conversion efficiency with a simple structure. In this study, we investigate the passivation characteristics of VOx thin films as a hole-selective contact layer using ALD (atomic layer deposition). Passivation characteristics improve with iVoc (implied open-circuit voltage) of 662 mV and minority carrier lifetime of 73.9 µs after post-deposition annealing (PDA) at 100 ℃. The improved values are mainly attributed to a decrease in carbon during the VOx thin film process after PDA. However, once it is annealed at temperatures above 250 ℃ the properties are rapidly degraded. X-ray photoelectron spectroscopy is used to analyze the chemical states of the VOx thin film. As the annealing temperature increases, it shows more formation of SiOx at the interface increases. The ratio of V5+ to V4+, which is the oxidation states of vanadium oxide thin films, are 6:4 for both as-deposition and annealing at 100 ℃, and 5:5 for annealing at 300 ℃. The lower the carbon content of the ALD VOx film and the higher the V5+ ratio, the better the passivation characteristics.

Characteristics of a-Si:H TFTs with Silicon Oxide as Passivation Layer

  • Chae, Jung-Hun;Jung, Young-Sup;Kim, Jong-Il;Kim, Chang-Dong;Chung, In-Jae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.940-943
    • /
    • 2005
  • The characteristics of a-Si:H TFTs with silicon oxide as passivation layer were reported. It was studied that the insulating characteristics and step coverage characteristics of low temperature silicon oxide before applying to a-Si:H TFT fabrications. With the optimum deposition conditions considering electrical and deposition characteristics, low temperature silicon oxide was applied to a-Si:H TFTs. The changes in characteristics of a-Si:H TFTs were analyzed after replacing silicon nitride passivation layer with low temperature silicon oxide layer. This low temperature silicon oxide can be adapted to high resolution a-Si:H TFT LCD panels.

  • PDF

A Study on the Characteristics of Aluminum Oxide Thin Films Prepared by ECR-PECVD (ECR-플라즈마 화학 증착된 알루미늄 산화막 연구)

  • 이재균;전병혁;이원종
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.6
    • /
    • pp.601-608
    • /
    • 1994
  • Aluminum oxide thin films were deposited on p-type(100) silicon substrates by electron cyclotron resonance plasma enhanced CVD(ECR-PECVD) using TMA[Al(CH3)3] and oxygen as reactant gases at 16$0^{\circ}C$ or lower temperatures. The aluminum oxide films deposited by ECR-PECVD have the amorphous structure with the refractive index of 1.62~1.64 and the O/Al ratio of 1.6~1.7. Oxygen flow rate necessary for the stable deposition of the aluminum oxide films increases as the deposition temperature increases. It was found from the OES analysis that the ECR plasma had les cooling effect by introducing the TMA reactant gas in comparison with the RF plasma. The properties of aluminum oxide films prepared by ECR-PECVD were compared with those prepared by RF-PECVD. The ECR-PECVD aluminum oxide films have the higher refractive indices, the lower contents of impurities (H and C) and the stronger wet etch resistance than those deposited by RF-PECVD.

  • PDF

Effect of the Hydrophobicity of Hybrid Gate Dielectrics on a ZnO Thin Film Transistor

  • Choi, Woon-Seop;Kim, Se-Hyun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.6
    • /
    • pp.257-260
    • /
    • 2010
  • Zinc oxide (ZnO) bottom-contact thin-film transistors (TFTs) were prepared by the use of injector type atomic layer deposition. Two hybrid gate oxide systems of different polarity polymers with silicon oxide were examined with the aim of improving the properties of the transistors. The mobility and threshold voltage of a ZnO TFT with a poly(4-dimethylsilyl styrene) (Si-PS)/silicon oxide hybrid gate dielectric had values of 0.41 $cm^2/Vs$ and 24.4 V, and for polyimide/silicon oxide these values were 0.41 $cm^2/Vs$ and 24.4 V, respectively. The good hysteresis property was obtained with the dielectric of hydrophobicity. The solid output saturation behavior of ZnO TFTs was demonstrated with a $10^6$ on-off ratio.