• 제목/요약/키워드: Oxide Deposition

검색결과 1,530건 처리시간 0.03초

공증착법으로 제작한 BSCCO 초전도 박막의 부착계수 해석 (Analysis of Sticking Coefficient in BSCCO Superconductor Thin Film Fabricated by Co-deposition)

  • 안인순;천민우;박용필
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.300-303
    • /
    • 2001
  • BSCCO thin films are fabricated via a co-deposition process by an ion beam sputtering with an ultra-low growth rate, and sticking coefficients of the respective elements are evaluated. The sticking coefficient of Bi element exhibits a characteristic temperature dependence : almost a constant value of 0.49 below $730^{\circ}C$ and decreases linearly with temperature over $730^{\circ}C$. This temperature dependence can be elucidated from the evaporation and sublimation rates of bismuth oxide, $Bi_{2}O_{3}$, from the film surface. It is considered that the liquid phase of the bismuth oxide plays an important role in the Bi 2212 phase formation in the co-deposition process.

  • PDF

공증착법으로 제작한 BSCCO 초전도 박막의 부착계수 해석 (Analysis of Sticking Coefficient in BSCCO Superconductor Thin Film Fabricated by Co-deposition)

  • 안인순;천민우;박용필
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.300-303
    • /
    • 2001
  • BSCCO thin films are fabricated via a co-deposition process by an ion beam sputtering with an ultra-low growth rate, and sticking coefficients of the respective elements are evaluated. The sticking coefficient of Bi element exhibits a characteristic temperature dependence : almost a constant value of 0.49 below 730$^{\circ}C$ and decreases linearly with temperature over 730$^{\circ}C$. This temperature dependence can be elucidated from the evaporation and sublimation rates of bismuth oxide, Bi$_2$O$_3$, from the film surface. It is considered that the liquid phase of the bismuth oxide plays an important role in the Bi 2212 phase formation in the co-deposition process.

  • PDF

PLD를 이용한 IZO 투명전극의 결정구조에 영향을 미치는 공정인자에 대한 연구 (The Effects of the Processing Parameters on the Structure of IZO Transparent Thin Films Deposited by PLD Process)

  • 김판영;이재열
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.317-318
    • /
    • 2007
  • In this study, transparent conducting oxide indium zinc oxide (IZO) thin films were deposited by pulsed laser deposition (PLD) Process as a function of the deposition time on the glass substrates at $400^{\circ}C$. The crystal structures, electrical and optical properties of IZO films analyzed by XRD, AFM, and UV spectrometer. High quality IZO thin film with the resistivity of $9.1{\times}10^{-4}$ ohm cm and optical transmittance over 85% was obtained for sample when deposition time was 15min. Thin films with the preferred orientations along the c axis were observed as the deposition time increased.

  • PDF

저온화학기상증착에 의한 인듐산화막 구조에 관한 연구 (Structural study of indium oxide thin films by metal organic chemical vapor deposition)

  • 스리벤카트;성낙진;윤순길
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.47-47
    • /
    • 2007
  • Indium oxide conducting films were dep9sited on Si(100) substrates at various temperatures by liquid delivery metal organic chemical vapor deposition using Indium (III) tris (2,2,6,6-tetramethyl-3.5-heptanedionato) $(dpm)_3$ precursors. The films deposited at $200{\sim}400^{\circ}C$ were grown with a (111) preferred orientation and exhibit an increase of grain size from 21 to 33nm with increasing deposition temperature. In the range of deposition temperature, there is no metallic indium phase in deposited films.

  • PDF

노즐 형태 HCP RT-MOCVD에 의해 증착된 티타늄 산화막 특성 (The Characteristics of Titanium Oxide Films Deposited by the Nozzle-type HCP RT-MOCVD)

  • 정일현
    • 공업화학
    • /
    • 제17권2호
    • /
    • pp.194-200
    • /
    • 2006
  • 금속 산화막 공정에 응용하기 위하여 노즐형태 HCP (hollow cathode plasma) RT-MOCVD에 의해 티타늄 산화막을 증착하였다. TTNB (titanium n-butoxide)를 사용하였을 경우 막을 증착한 후 열처리하여야 하지만 titanium ethoxide에 의해 막을 증착하면 일반적으로 수반되는 열처리 공정을 생략하여도 티타늄 산화막이 직접적으로 형성되었다. RF-power 240 watt, 전극과 기판과의 거리가 3 cm, 반응시간 20 min, Ar와 $O_2$의 유량비 1 : 1에서 티타늄과 산소의 조성비가 1 : 2임을 확인할 수 있었다. 따라서 노즐형태 HCP RT-MOCVD에 의해 티타늄 산화막을 열처리 공정 없이 증착되었으며, 저온에서 다양한 금속 산화막 증착 공정에 응용할 수 있었다.

PECVD법에 의해 제조된 SnO2 박막의 공정변수에 따른 미세구조 및 특성 (Microstructure and Characterization Depending on Process Parameter of SnO2 Thin Films Fabricated by PECVD Method)

  • 이정훈;장건익;손상희
    • 한국전기전자재료학회논문지
    • /
    • 제19권7호
    • /
    • pp.680-686
    • /
    • 2006
  • Tin oxide$(SnO_2)$ thin films were prepared on glass substrate by Plasma Enhanced Chemical Vapor Deposition (PECVD) method. $SnO_2$ thin films were prepared using gas mixture of dibutyltin diacetate as a precursor and oxygen as an oxidant at 275, 325, 375, $425^{\circ}C$, respectively as a function of deposition temperature. The XRD peaks corresponded to those of polycrystalline $SnO_2$, which is in the tetragonal system with a rutil-type structure. As the deposition temperature increased, the texture plane of $SnO_2$ changed from (200) plane to denser (211) and (110) planes. Lower deposition temperature and shorter deposition time led to decreasing surface roughness and electrical resistivity of the formed thin films at $325\sim425^{\circ}C$. The properties of $SnO_2$ films were critically affected by deposition temperature and time.

SnO$_2$박막의 전기적 특성에 미치는 불소 doping및 열처리 효과 (Effect of fluorine doping and heat treatment for SnO$_2$ thin films on electrical properties)

  • 류득배;이수완;박정일;박광자
    • 한국표면공학회지
    • /
    • 제33권2호
    • /
    • pp.87-92
    • /
    • 2000
  • Transparent and electrical conducting tin oxide thin films were fabricated on soda lime silicate glass by thermal chemical vapour deposition technique. Thin films were deposition from mixtures of tetramethyltin (TMT) as a precursor, oxygen or oxygen containing ozone as an oxidant and 1,1,1,2-tetrafluoroethane as a doping material. Electrical properties of fabricated tin oxide films were changed depending on substrate temperature, and the amount of dopant. Resistivity of tin oxide films was reduced by doping fluorine or heat treatment. Thin films can be optimized at TMT flow rate of 8sccm, oxygen flow rate of 150sccm, 1,1,1,2-tetrafluoroethane floe rate of 300sccm and substrate temperature $380^{\circ}C$. In this conditions, the lowest resistivity of tin oxide films were $9$\times$10^{-4}$ $\Omega$cm.

  • PDF

게이트 산화막 가장자리에 Air-cavity를 가지는 새로운 구조의 다결정 실리콘 박막 트랜지스터 (A New Poly-Si TFT Employing Air-Cavities at the Edge of Gate Oxide)

  • 이민철;정상훈;송인혁;한민구
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제50권8호
    • /
    • pp.365-370
    • /
    • 2001
  • We have proposed and fabricated a new poly-Si TFT employing air-cavities at the edges of gate oxide in order to reduce the vertical electric field induced near the drain due to low dielectric constant of air. Air-cavity has been successfully fabricated by employing the wet etching of gate oxide and APCVD (Atmospheric pressure chemical vapor deposition) oxide deposition. Our experimental results show that the leakage current of the proposed TFT is considerably reduced by the factor of 10 and threshold voltage shift under high gate bias is also reduced because the carrier injection into gate insulator over the drain depletion region is suppressed.

  • PDF

저온 고체산화물연료전지 구현을 위한 다층 나노기공성 금속기판의 제조 (Development of Metal Substrate with Multi-Stage Nano-Hole Array for Low Temperature Solid Oxide Fuel Cell)

  • 강상균;박용일
    • 한국세라믹학회지
    • /
    • 제42권12호
    • /
    • pp.865-871
    • /
    • 2005
  • Submicron thick solid electrolyte membrane is essential to the implementation of low temperature solid oxide fuel cell, and, therefore, development of new electrode structures is necessary for the submicron thick solid electrolyte deposition while providing functions as current collector and fuel transport channel. In this research, a nickel membrane with multi-stage nano hole array has been produced via modified two step replication process. The obtained membrane has practical size of 12mm diameter and $50{\mu}m$ thickness. The multi-stage nature provides 20nm pores on one side and 200nm on the other side. The 20nm side provides catalyst layer and $30\~40\%$ planar porosity was measured. The successful deposition of submicron thick yttria stabilized zirconia membrane on the substrate shows the possibility of achieving a low temperature solid oxide fuel cell.