• Title/Summary/Keyword: Oxide Deposition

Search Result 1,530, Processing Time 0.039 seconds

Formation of ultra-shallow $p^+-n$ junction through the control of ion implantation-induced defects in silicon substrate (이온 주입 공정시 발생한 실리콘 내 결함의 제어를 통한 $p^+-n$ 초 저접합 형성 방법)

  • 이길호;김종철
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.4
    • /
    • pp.326-336
    • /
    • 1997
  • From the concept that the ion implantation-induced defect is one of the major factors in determining source/drain junction characteristics, high quality ultra-shallow $p^+$-n junctions were formed through the control of ion implantation-induced defects in silicon substrate. In conventional process of the junction formation. $p^+$ source/drain junctions have been formed by $^{49}BF_2^+$ ion implantation followed by the deposition of TEOS(Tetra-Ethyl-Ortho-Silicate) and BPSG(Boro-Phospho-Silicate-Glass) films and subsequent furnace annealing for BPSG reflow. Instead of the conventional process, we proposed a series of new processes for shallow junction formation, which includes the additional low temperature RTA prior to furnace annealing, $^{49}BF_2^+/^{11}B^+$ mixed ion implantation, and the screen oxide removal after ion implantation and subsequent deposition of MTO (Medium Temperature CVD oxide) as an interlayer dielectric. These processes were suggested to enhance the removal of ion implantation-induced defects, resulting in forming high quality shallow junctions.

  • PDF

The Electrical and Optical Characteristics of ATO Films Prepared by RF Magnetron Sputtering Method (RF 마그네트론 스퍼트링법에 의해 제조된 ATO 박막의 전기적 및 광학적 특성)

  • Kang, Sung Soo;Lee, Sung Ho;Jang, Yoon Seok;Park, Sang Chul
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.15 no.4
    • /
    • pp.299-305
    • /
    • 2010
  • Purposes: The purposes of this study were to investigate the optical, structural and electrical properties of the antimony doped tin oxide(ATO) thin films according to certain variable deposition conditions, such as RF input power and T-S (target-substrate) distance change, using transparent conducting oxide (TCO). Methods: ATO thin films of Sb concentration ratio with $SnO_2:Sb_2O_5$ = 95:5 wt% were deposited at room temperature by RF magnetron sputtering method. Results: ATO thin films were most sensitive to the RF input power: light transmittance was 78% at RF input power of 30W, and 0.56 nm for the surface roughness and 1007 $\Omega{\cdot}cm^{-2}$ for the sheet resistance as well. Conclusions: It was found that ATO thin films were showed the large change in its characteristics of structural, optical and electrical properties which were affected by T-S distance and RF input power.

Fabrication of Micro Solid Oxide Fuel Cell by Thin Film Processing Hybridization: I. Multilayer Structure of Sputtered YSZ Thin Film Electrolyte and Ni-Based Anodes deposited by Spray Pyrolysis (박막공정의 융합화를 통한 초소형 고체산화물 연료전지의 제작: I. Spray Pyrolysis법으로 증착된 Ni 기반 음극과 스퍼터링으로 증착된 YSZ 전해질의 다층구조)

  • Son, Ji-Won;Kim, Hyoung-Chul;Kim, Hae-Ryoung;Lee, Jong-Ho;Lee, Hae-Weon;Bieberle-Hutter, A.;Rupp, J.L.M.;Muecke, U.P.;Beckel, D.;Gauckler, L.J.
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.10
    • /
    • pp.589-595
    • /
    • 2007
  • Physical properties of sputtered YSZ thin film electrolytes on anode thin film by spray pyrolisis has been investigated to realize the porous electrode and dense electrolyte multilayer structure for micro solid oxide fuel cells. It is shown that for better crystallinity and density, YSZ need to be deposited at an elevated temperature. However, if pure NiO anode was used for high temperature deposition, massive defects such as spalling and delamination were induced due to high thermal expansion mismatch. By changing anode to NiOCGO composite, defects were significantly reduced even at high deposition temperature. Further research on realization of full cells by processing hybridization and cell performance characterization will be performed in near future.

Integration of Ba0.5Sr0.5TiO3Epitaxial Thin Films on Si Substrates and their Dielectric Properties (Si기판 위에 Ba0.5Sr0.5TiO3 산화물 에피 박막의 집적화 및 박막의 유전 특성에 관한 연구)

  • Kim, Eun-Mi;Moon, Jong-Ha;Lee, Won-Jae;Kim, Jin-Hyeok
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.6 s.289
    • /
    • pp.362-368
    • /
    • 2006
  • Epitaxial $Ba_{0.5}Sr_{0.5}TiO_3$ (BSTO) thin films have been grown on TiN buffered Si (001) substrates by Pulsed Laser Deposition (PLD) method and the effects of substrate temperature and oxygen partial pressure during the deposition on their dielectric properties and crystallinity were investigated. The crystal orientation, epitaxy nature, and microstructure of oxide thin films were investigated using X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). Thin films were prepared with laser fluence of $4.2\;J/cm^2\;and\;3\;J/cm^2$, repetition rate of 8 Hz and 10 Hz, substrate temperatures of $700^{\circ}C$ and ranging from $350^{\circ}C\;to\;700^{\circ}C$ for TiN and oxide respectively. BSTO thin-films were grown on TiN-buffered Si substrates at various oxygen partial pressure ranging from $1{\times}10^{-4}$ torr to $1{\times}10^{-5}$ torr. The TiN buffer layer and BSTO thin films were grown with cube-on-cube epitaxial orientation relationship of $[110](001)_{BSTO}{\parallel}[110](001)_{TiN}{\parallel}[110](001)_{Si}$. The crystallinity of BSTO thin films was improved with increasing substrate temperature. C-axis lattice parameters of BSTO thin films, calculated from XRD ${\theta}-2{\theta}$ scans, decreased from 0.408 m to 0.404 nm and the dielectric constants of BSTO epitaxial thin films increased from 440 to 938 with increasing processing oxygen partial pressure.

Performance of Solid Oxide Fuel Cell with Gradient-structured Thin-film Cathode Composed of Pulsed-laser-deposited Lanthanum Strontium Manganite-Yttria-stabilized Zirconia Composite (PLD 공정으로 제조된 LSM-YSZ 나노복합체층이 포함된 경사구조 박막 공기극을 적용한 SOFC의 성능 분석)

  • Myung, Doo-Hwan;Hong, Jong-Ill;Hwang, Jae-Yeon;Lee, Jong-Ho;Lee, Hae-Weon;Kim, Byung-Kook;Cho, Sung-Gurl;Son, Ji-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.487-492
    • /
    • 2011
  • The effect of the application of lanthanum strontrium manganite and yttria-stabilized zirconia (LSM-YSZ) nano-composite fabricated by pulsed laser deposition (PLD) as a cathode of solid oxide fuel cell (SOFC) is studied. A gradient-structure thin-film cathode composed of 1 micron-thick LSM-YSZ deposited at an ambient pressure ($P_{amb}$) of 200 mTorr; 2 micron-thick LSM-YSZ deposited at a $P_{amb}$ of 300 mTorr; and 2 micron-thick lanthanum strontium cobaltite (LSC) current collecting layer was fabricated on an anode-supported SOFC with an ~8 micron-thick YSZ electrolyte. In comparison with a 1 micron-thick nano-structure single-phase LSM cathode fabricated by PLD, it was obviously effective to increase triple phase boundaries (TPB) over the whole thickness of the cathode layer by employing the composite and increasing the physical thickness of the cathode. Both polarization and ohmic resistances of the cell were significantly reduced and the power output of the cell was improved by a factor of 1.6.

SiC/SiO2 Interface Characteristics in N-based 4H-SiC MOS Capacitor Fabricated with PECVD and NO Annealing Processes (PECVD와 NO 어닐링 공정을 이용하여 제작한 N-based 4H-SiC MOS Capacitor의 SiC/SiO2 계면 특성)

  • Song, Gwan-Hoon;Kim, Kwang-Soo
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.447-455
    • /
    • 2014
  • In this research, n-based 4H-MOS Capacitor was fabricated with PECVD (plasma enhanced chemical vapor deposition) process for improving SiC/$SiO_2$ interface properties known as main problem of 4H-SiC MOSFET. To overcome the problems of dry oxidation process such as lower growth rate, high interface trap density and low critical electric field of $SiO_2$, PECVD and NO annealing processes are used to MOS Capacitor fabrication. After fabrication, MOS Capacitor's interface properties were measured and evaluated by hi-lo C-V measure, I-V measure and SIMS. As a result of comparing the interface properties with the dry oxidation case, improved interface and oxide properties such as 20% reduced flatband voltage shift, 25% reduced effective oxide charge density, increased oxide breakdown field of 8MV/cm and best effective barrier height of 1.57eV, 69.05% reduced interface trap density in the range of 0.375~0.495eV under the conduction band are observed.

Novel Deposition Technique of ZnO:Al Transparent Conduction Oxide Layer on Chemically Etched Glass Substrates for High-haze Textured Surface

  • Park, Hyeongsik;Pak, Jeong-Hyeok;Shin, Myunghoon;Bong, Sungjae;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.426.1-426.1
    • /
    • 2014
  • For high performance thin film solar cells, texturing surface, enhancing the optical absorptionpath, is pretty important. Textured ZnO:Al transparent oxide layer of high haze is commonly used in Si thin film solar cells. In this paper, novel deposition method for aluminum doped zinc oxide (ZnO:Al) on glass substrates is presented to improve the haze property. The broccoli structure of ZnO:Al layer was formed on chemically etched glass substrates, which showed high haze value on a wide wavelength range.The etching condition of the glass substrates can change not only the haze values of the ZnO:Al of in-situ growth but alsothe electrical and optical properties of the deposited ZnO:Al films.The etching mechanism of the glass substrate affecting on the surface morphology of the glass will be discussed, which resulted in variation of texture of ZnO:Al layer. The optical properties of substrate morphology were also analyzed with EDS and FTIR results. As a result, the high haze value of 85.4% was obtained in the wavelength range of 300 nm to 1100 nm. Furthermore, low sheet resistance of about 5~18 ohm/sq was achieved for different surface morphologies of the ZnO:Al films.

  • PDF

Flexibility Improvement of InGaZnO Thin Film Transistors Using Organic/inorganic Hybrid Gate Dielectrics

  • Hwang, B.U.;Kim, D.I.;Jeon, H.S.;Lee, H.J.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.341-341
    • /
    • 2012
  • Recently, oxide semi-conductor materials have been investigated as promising candidates replacing a-Si:H and poly-Si semiconductor because they have some advantages of a room-temperature process, low-cost, high performance and various applications in flexible and transparent electronics. Particularly, amorphous indium-gallium-zinc-oxide (a-IGZO) is an interesting semiconductor material for use in flexible thin film transistor (TFT) fabrication due to the high carrier mobility and low deposition temperatures. In this work, we demonstrated improvement of flexibility in IGZO TFTs, which were fabricated on polyimide (PI) substrate. At first, a thin poly-4vinyl phenol (PVP) layer was spin coated on PI substrate for making a smooth surface up to 0.3 nm, which was required to form high quality active layer. Then, Ni gate electrode of 100 nm was deposited on the bare PVP layer by e-beam evaporator using a shadow mask. The PVP and $Al_2O_3$ layers with different thicknesses were used for organic/inorganic multi gate dielectric, which were formed by spin coater and atomic layer deposition (ALD), respectively, at $200^{\circ}C$. 70 nm IGZO semiconductor layer and 70 nm Al source/drain electrodes were respectively deposited by RF magnetron sputter and thermal evaporator using shadow masks. Then, IGZO layer was annealed on a hotplate at $200^{\circ}C$ for 1 hour. Standard electrical characteristics of transistors were measured by a semiconductor parameter analyzer at room temperature in the dark and performance of devices then was also evaluated under static and dynamic mechanical deformation. The IGZO TFTs incorporating hybrid gate dielectrics showed a high flexibility compared to the device with single structural gate dielectrics. The effects of mechanical deformation on the TFT characteristics will be discussed in detail.

  • PDF

Indium Tin Oxide Based Reflector for Vertical UV LEDs (자외선 수직형 LED 제작을 위한 Indium Tin Oxide 기반 반사전극)

  • Jung, Ki-Chang;Lee, Inwoo;Jeong, Tak;Baek, Jong Hyeob;Ha, Jun-Seok
    • Korean Journal of Materials Research
    • /
    • v.23 no.3
    • /
    • pp.194-198
    • /
    • 2013
  • In this paper, we studied a p-type reflector based on indium tin oxide (ITO) for vertical-type ultraviolet light-emitting diodes (UV LEDs). We investigated the reflectance properties with different deposition methods. An ITO layer with a thickness of 50 nm was deposited by two different methods, sputtering and e-beam evaporation. From the measurement of the optical reflection, we obtained 70% reflectance at a wavelength of 382 nm by means of sputtering, while only 30% reflectance resulted when using the e-beam evaporation method. Also, the light output power of a $1mm{\times}1mm$ vertical chip created with the sputtering method recorded a twofold increase over a chip created with e-beam evaporation method. From the measurement of the root mean square (RMS), we obtained a RMS value 1.3 nm for the ITO layer using the sputtering method, while this value was 5.6 nm for the ITO layer when using the e-beam evaporation method. These decreases in the reflectance and light output power when using the e-beam evaporation method are thought to stem from the rough surface morphology of the ITO layer, which leads to diffused reflection and the absorption of light. However, the turn-on voltage and operation voltage of the two samples showed identical results of 2.42 V and 3.5 V, respectively. Given these results, we conclude that the two ITO layers created by different deposition methods showed no differences in the electric properties of the ohmic contact and series resistance.

Characteristics of Transparent and Conducting Tin Oxide Film (투명전도성 Tin Oxide Film의 특성)

  • Chang Sup Ji;Tak Jin Moon;In Hoon Choi;Dok Yol Lee
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.102-109
    • /
    • 1987
  • Some characteristics of $SnO_2$ film which was deposited on a slide glass substrate, using dibutyl tin diacetate and oxygen, by the chemical vapor deposition were observed. The optimum condition for the preparation of the film was found to be at 420$^{\circ}C$ of substrate temperature for 20 min of deposition. Important optical, electrical, and structural features of the film were examined. It was found that the typical $SnO_2$ film on the untreated substrate was 4000${\AA}$ in thickness, transmitted 90% of the visible liglit, and provided 5800 ohms/${\square}$ of the sheet resistance. It was also found that the surface treatments of the slide glass by acid leaching were beneficial. The film structure was found to be a mixture of polycrystalline tetragonal stannic oxide confirmed by the X-ray diffraction and to be spherical fine grains concluded by the scanning electron microscopy.

  • PDF