• Title/Summary/Keyword: Oxide Deposition

Search Result 1,530, Processing Time 0.026 seconds

Synthesis of CdS with Graphene by CBD(Chemical Bath Deposition) Method and Its Photocatalytic Activity

  • Pawar, R.C.;Lee, Jin-Yong;Kim, Eun-Jeong;Kim, Hyungsub;Lee, Caroline Sunyong
    • Korean Journal of Materials Research
    • /
    • v.22 no.10
    • /
    • pp.504-507
    • /
    • 2012
  • Synthesis of RGO (reduced graphene oxide)-CdS composite material was performed through CBD (chemical bath deposition) method in which graphene oxide served as the support and Cadmium Sulfate Hydrate as the starting material. Graphene-based semiconductor photocatalysts have attracted extensive attention due to their usefulness for environmental and energy applications. The band gap (2.4 eV) of CdS corresponds well with the spectrum of sunlight because the crystalline phase, size, morphology, specic surface area and defects, etc., of CdS can affect its photocatalytic activity. The specific surface structure (morphology) of the photocatalyst can be effective for the suppression of recombination between photogenerated electrons and holes. Graphene (GN) has unique properties such as a high value of Young's modulus, large theoretical specific surface area, excellent thermal conductivity, high mobility of charge carriers, and good optical transmittance. These excellent properties make GN an ideal building block in nanocomposites. It can act as an excellent electron-acceptor/transport material. Therefore, the morphology, structural characterization and crystal structure were observed using various analytical tools, such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. From this analysis, it is shown that CdS particles were well dispersed uniformly in the RGO sheet. Furthermore, the photocatalytic property of the resulting RGO-CdS composite is also discussed in relation to environmental applications such as the photocatalytic degradation of pollutants. It was found that the prepared RGO-CdS nanocomposites exhibited enhanced photocatalytic activity as compared with that of CdS nanoparticles. Therefore, better efficiency of photodegradation was found for water purification applications using RGO-CdS composite.

A study on Improvement of sub 0.1$\mu\textrm{m}$VLSI CMOS device Ultra Thin Gate Oxide Quality Using Novel STI Structure (STI를 이용한 서브 0.1$\mu\textrm{m}$VLSI CMOS 소자에서의 초박막게이트산화막의 박막개선에 관한 연구)

  • 엄금용;오환술
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.9
    • /
    • pp.729-734
    • /
    • 2000
  • Recently, Very Large Scale Integrated (VLSI) circuit & deep-submicron bulk Complementary Metal Oxide Semiconductor(CMOS) devices require gate electrode materials such as metal-silicide, Titanium-silicide for gate oxides. Many previous authors have researched the improvement sub-micron gate oxide quality. However, few have reported on the electrical quality and reliability on the ultra thin gate oxide. In this paper, at first, I recommand a novel shallow trench isolation structure to suppress the corner metal-oxide semiconductor field-effect transistor(MOSFET) inherent to shallow trench isolation for sub 0.1${\mu}{\textrm}{m}$ gate oxide. Different from using normal LOCOS technology deep-submicron CMOS devices using novel Shallow Trench Isolation(STI) technology have a unique"inverse narrow-channel effects"-when the channel width of the devices is scaled down, their threshold voltage is shrunk instead of increased as for the contribution of the channel edge current to the total channel current as the channel width is reduced. Secondly, Titanium silicide process clarified that fluorine contamination caused by the gate sidewall etching inhibits the silicidation reaction and accelerates agglomeration. To overcome these problems, a novel Two-step Deposited silicide(TDS) process has been developed. The key point of this process is the deposition and subsequent removal of titanium before silicidation. Based on the research, It is found that novel STI structure by the SEM, in addition to thermally stable silicide process was achieved. We also obtained the decrease threshold voltage value of the channel edge. resulting in the better improvement of the narrow channel effect. low sheet resistance and stress, and high threshold voltage. Besides, sheet resistance and stress value, rms(root mean square) by AFM were observed. On the electrical characteristics, low leakage current and trap density at the Si/SiO$_2$were confirmed by the high threshold voltage sub 0.1${\mu}{\textrm}{m}$ gate oxide.

  • PDF

Formation of Silica Nanowires by Using Silicon Oxide Films: Oxygen Effect (산화 실리콘 막을 이용한 실리카 나노 와이어의 형성 : 산소 효과)

  • Yoon, Jong-Hwan
    • New Physics: Sae Mulli
    • /
    • v.68 no.11
    • /
    • pp.1203-1207
    • /
    • 2018
  • In this study, silica nanowires were formed using silicon oxide films with different oxygen contents, and their microstructure and physical properties were compared with those of silica nanowires formed using Si wafers. The silicon oxide films were fabricated by using a plasma-enhanced chemical vapor deposition method. Silica nanowires were formed by thermally annealing silicon oxide films coated with nickel films as a catalyst. In the case of silicon oxide films having an oxygen content of approximately 50 at.% or less, the formation mechanism, microstructure, and physical properties of the nanowires were not substantially different from those of the silicon wafer. In particular, the uniformity of the thickness showed better behavior in the silicon oxide films. These results imply that silicon oxide films can be used as an alternative for fabricating high-quality silica nanowires at low cost.

Preparation of Hafnium Oxide Thin Films grown by Atomic Layer Deposition (원자층 증착법으로 성장한 HfO2 박막의 제조)

  • Kim Hie-Chul;Kim Min-Wan;Kim Hyung-Su;Kim Hyug-Jong;Sohn Woo-Keun;Jeong Bong-Kyo;Kim Suk-Whan;Lee Sang-Woo;Choi Byung-Ho
    • Korean Journal of Materials Research
    • /
    • v.15 no.4
    • /
    • pp.275-280
    • /
    • 2005
  • The growth of hafnium oxide thin films by atomic layer deposition was investigated in the temperature range of $175-350^{\circ}C$ using $Hf[N(CH_3)_2]_4\;and\;O_2$ as precursors. A self-limiting growth of $0.6\AA/cycle$ was achieved at the substrate temperature of $240-280^{\circ}C$. The films were amorphous and very smooth (0.76-0.80 nm) as examined by X-ray diffractometer and atomic force microscopy, respectively. X-ray photoelectron spectroscopy analysis showed that the films grown at $300^{\circ}C$ was almost stoichiometric. Electrical measurements performed on $MoW/HfO_2$(20 nm)/Si MOS structures exhibited high dielectric constant$(\~17)$ and a remarkably low leakage current density of at an applied field of $1.5-6.2\times10^{-7}A/cm^2$ MV/cm, probably due to the stoichiometry of the films.

Rear Surface Passivation of Silicon Solar Cell with AlON Layer by Reactive Magnetron Sputtering

  • Moon, Sun-Woo;Kim, Eun-Kyeom;Park, Won-Woong;Kim, Kyung-Hoon;Kim, Sung-Min;Kim, Dong-Hwan;Han, Seung-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.430-430
    • /
    • 2012
  • The surface recombination velocity of the silicon solar cell could be reduced by passivation with insulating layers such as $SiO_2$, SiNx, $Al_2O_3$, a-Si. Especially, the aluminium oxide has advantages over other materials at rear surface, because negative fixed charge via Al vacancy has an additional back surface field effect (BSF). It can increase the lifetime of the hole carrier in p-type silicon. The aluminium oxide thin film layer is usually deposited by atomic layer deposition (ALD) technique, which is expensive and has low deposition rate. In this study, ICP-assisted reactive magnetron sputtering technique was adopted to overcome drawbacks of ALD technique. In addition, it has been known that by annealing aluminium oxide layer in nitrogen atmosphere, the negative fixed charge effect could be further improved. By using ICP-assisted reactive magnetron sputtering technique, oxygen to nitrogen ratio could be precisely controlled. Fabricated aluminium oxy-nitride (AlON) layer on silicon wafers were analyzed by x-ray photoelectron spectroscopy (XPS) to investigate the atomic concentration ratio and chemical states. The electrical properties of Al/($Al_2O_3$ or $SiO_2/Al_2O_3$)/Si (MIS) devices were characterized by the C-V measurement technique using HP 4284A. The detailed characteristics of the AlON passivation layer will be shown and discussed.

  • PDF

Formation and Photoluminescence of Silicon Oxide Nanowires by Thermal Treatment of Nickel Nanoparticles Deposited on the Silicon Wafer

  • Jang, Seon-Hui;Lee, Yeong-Il;Kim, Dong-Hun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.27.1-27.1
    • /
    • 2011
  • The recent extensive research of one-dimensional (1D) nanostructures such as nanowires (NWs) and nanotubes (NTs) has been the driving force to fabricate new kinds of nanoscale devices in electronics, optics and bioengineering. We attempt to produce silicon oxide nanowires (SiOxNWs) in a simple way without complicate deposition process, gaseous Si containing precursors, or starting material of $SiO_2$. Nickel (Ni) nanoparticles (NPs) were applied on Si wafer and thermally treated in a furnace. The temperature in the furnace was kept in the ranges between 900 and $1,100^{\circ}C$ and a mixture of nitrogen ($N_2$) and hydrogen ($H_2$) flowed through the furnace. The SiOxNWs had widths ranging from 100 to 200 nm with length extending up to ~10 ${\mu}m$ and their structure was amorphous. Ni NPs were acted as catalysts. Since there were no other Si materials introduced into the furnace, the Si wafer was the only Si sources for the growth of SiOxNWs. When the Si wafer with deposition of Ni NPs was heated, the liquid Ni-Si alloy droplets were formed. The droplets as the nucleation sites induce an initiation of the growth of SiOxNWs and absorb oxygen easily. As the droplets became supersaturated, the SiOxNWs were grown, by the reaction between Si and O and continuously dissolving Si and O onto NPs. Photoluminescence (PL) showed that blue emission spectrum was centered at the wavelength of 450 nm (2.76 eV). The details of growth mechanism of SiOxNWs and the effect of Ni NPs on the formation of SiOxNWs will be presented.

  • PDF

NO Gas Sensing Properties of ZnO-SWCNT Composites (산화아연-단일벽탄소나노튜브복합체의 일산화질소 감지 특성)

  • Jang, Dong-Mi;Ahn, Se-Yong;Jung, Hyuck;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.623-627
    • /
    • 2010
  • Semiconducting metal oxides have been frequently used as gas sensing materials. While zinc oxide is a popular material for such applications, structures such as nanowires, nanorods and nanotubes, due to their large surface area, are natural candidates for use as gas sensors of higher sensitivity. The compound ZnO has been studied, due to its chemical and thermal stability, for use as an n-type semiconducting gas sensor. ZnO has a large exciton binding energy and a large bandgap energy at room temperature. Also, ZnO is sensitive to toxic and combustible gases. The NO gas properties of zinc oxide-single wall carbon nanotube (ZnO-SWCNT) composites were investigated. Fabrication includes the deposition of porous SWCNTs on thermally oxidized $SiO_2$ substrates followed by sputter deposition of Zn and thermal oxidation at $400^{\circ}C$ in oxygen. The Zn films were controlled to 50 nm thicknesses. The effects of microstructure and gas sensing properties were studied for process optimization through comparison of ZnO-SWCNT composites with ZnO film. The basic sensor response behavior to 10 ppm NO gas were checked at different operation temperatures in the range of $150-300^{\circ}C$. The highest sensor responses were observed at $300^{\circ}C$ in ZnO film and $250^{\circ}C$ in ZnO-SWCNT composites. The ZnO-SWCNT composite sensor showed a sensor response (~1300%) five times higher than that of pure ZnO thin film sensors at an operation temperature of $250^{\circ}C$.

Optical and Electrical Properties of Fluorine-Doped Tin Oxide Prepared by Chemical Vapor Deposition at Low Temperature (저온 증착된 불소도핑 주석 산화 박막의 광학적·전기적 특성)

  • Park, Ji Hun;Jeon, Bup Ju
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.517-524
    • /
    • 2013
  • The electrical and optical properties of fluorine-doped tin oxide films grown on polyethylene terephthalate film with a hardness of 3 using electron cyclotron resonance plasma with linear microwave of 2.45 GHz of high ionization energy were investigated. Fluorine-doped tin oxide films with a magnetic field of 875 Gauss and the highest resistance uniformity were obtained. In particular, the magnetic field could be controlled by varying the distribution in electron cyclotron deposition positions. The films were deposited at various gas flow rates of hydrogen and carrier gas of an organometallic source. The surface morphology, electrical resistivity, transmittance, and color in the visible range of the deposited film were examined using SEM, a four-point probe instrument, and a spectrophotometer. The electromagnetic field for electron cyclotron resonance condition was uniformly formed in at a position 16 cm from the center along the Z-axis. The plasma spatial distribution of magnetic current on the roll substrate surface in the film was considerably affected by the electron cyclotron systems. The relative resistance uniformity of electrical properties was obtained in film prepared with a magnetic field in the current range of 180~200A. SEM images showing the surface morphologies of a film deposited on PET with a width of 50 cm revealed that the grains were uniformly distributed with sizes in the range of 2~7 nm. In our experimental range, the electrical resistivity of film was able to observe from $1.0{\times}10^{-2}$ to $1.0{\times}10^{-1}{\Omega}cm$ where optical transmittance at 550 nm was 87~89 %. These properties were depended on the flow rate of the gas, hydrogen and carrier gas of the organometallic source, respectively.

Molybdeum Oxide Film Preparation by a Magnetic Null Discharge Sputtering and its Application (자기 중성방전 스퍼터링에 의한 산화몰리브덴 박막의 제작 및 그 응용)

  • Kim, Doo-Hwan;Park, Cha-Soo;Sung, Youl-Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.169-175
    • /
    • 2009
  • In this experiment molybdeum oxide($MoO_3$) films were prepared by a magnetic null discharge(MND) sputtering system and fundamental properties by XRD, XPS and SEM analysis were investigated. The initial and mean insulation resistance of the same with $MoO_3$ film were about 1.4[$M{\Omega}$] and 800[$k{\Omega}$] under the condition of applied voltage of 400[V]. The preferred orientation in the films changed from(100) to (210) with substrate temperature. Two XPS peaks of the $MoO_3$ photoelectron were detected at the binding energies of 228.9[eV] and 232.4[eV], while the binding energy of the O1s peak was 532.6[eV]. The substrate temperature and reactivity gives large effects to the structure and growth of the film and system is also very useful for performing the uniform reactive deposition. It can be found from the result of a $MoO_3$ film deposition that the system is very useful for performing the uniform reactive sputtering.

APCVD Process of SnO2 Thin-Film on Glass for Transparent Electrodes of Large-Scale Backplanes (대면적 기판의 투명 전극용 SnO2 박막 증착을 위한 APCVD 공정)

  • Kim, Byung-Kuk;Kim, Hyunsoo;Kim, Hyoung June;Park, Joonwoo;Kim, Yoonsuk;Park, Seungho
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.7-12
    • /
    • 2013
  • Tin oxide thin-films have been widely applied in various fields of high-technology industries due to their excellent physical and electric properties. Those applications are found in various sensors, heating elements of windshield windows, solar cells, flat panel displays as tranparent electrodes. In this study, we conducted an experiment for the deposition of $SnO_2$ on glass of 2nd Gen. size for the effective development of large-scale backplanes. As deposition temperatures or flow rates of the $SnCl_4$ as a precursor changed, the thickness of tin oxide thin-films, their sheet resistances, transmittances, and hazes varied considerably.