• Title/Summary/Keyword: Oxidative stress

Search Result 3,408, Processing Time 0.027 seconds

Comparative and Interactive Biochemical Effects of Sub-Lethal Concentrations of Cadmium and Lead on Some Tissues of the African Catfish (Clarias gariepinus)

  • Elarabany, Naglaa;Bahnasawy, Mohammed
    • Toxicological Research
    • /
    • v.35 no.3
    • /
    • pp.249-255
    • /
    • 2019
  • Cadmium is a strong toxic heavy metal which presents in paints and liquid wastes and causes oxidative stress in fish. On the other hand, lead is widely used for different purposes, e.g. lead pipes, it targets vital organs such as liver and kidney causing biochemical alterations. The present study evaluates the effects of 60 days exposure to Cd and Pb either single or combined together in African catfish. Sixty-four fishes were divided into 3 groups and exposed to $CdCl_2$ (7.02 mg/L) or $PbCl_2$ (69.3 mg/L) or a combination of them along with control group. Activities of acid phosphatase (ACP), lactate dehydrogenase (LDH) and glucose-6-phosphate dehydrogenase (G-6-PDH) were estimated. Moreover, gill, liver and kidney were assayed for activities of superoxide dismutase (SOD), catalase (CAT) and levels of glutathione (GSH) and malondialdehyde (MDA). Individual exposure showed that both Cd and Pb significantly decreased LDH activity and SOD activity in the kidney. Pb significantly increased G-6-PDH activity and decreased GSH level in the gill. CAT activity in liver and kidney elevated significantly on Cd exposure while lead caused a significant depletion in the liver and significant elevation in the kidney. Both Cd and Pb significantly increased MDA levels in liver and kidney while Pb increased its level in gills. The combined exposure resulted in normalization of LDH, G-6-PDH activity, and CAT activity in liver and kidney as well as GSH level in both tissues and MDA in gill and kidney. The combination increased SOD activity and MDA level in liver and decreased SOD activity in kidney and GSH level in gills. In conclusion, the antioxidant system of African catfish was adversely affected by prolonged exposure to Cd and Pb. The combined exposure caused less damage than individual exposure and returned most parameters to those of controls.

Development of transgenic potato with improved anthocyanin contents using sweet potato IbMYB1 gene (고구마의 IbMYB1 유전자를 이용한 안토시아닌 고함유 형질전환 감자의 개발)

  • Kim, Yun-Hee;Han, Eun-Hee;Kwak, Sang-Soo;Lee, Shin-Woo
    • Journal of Plant Biotechnology
    • /
    • v.45 no.4
    • /
    • pp.364-368
    • /
    • 2018
  • The R2R3-type protein IbMYB1 transcription factor is a key regulator for anthocyanin biosynthesis in the storage roots of sweet potatoes. It was previously demonstrated that the IbMYB1 expression stimulates anthocyanin pigmentation in tobacco leaves, arabidopsis and storage roots of sweet potatoes. In this study, we generated the transgenic potato plants that express the IbMYB1 genes, which accumulated high levels of anthocyanins under the control of either the tuber-specific patatin (PAT) promoter or oxidative stress-inducible peroxidase anionic 2 (SWPA2) promoter. The PAT-MYB1 transgenic lines exhibited higher anthocyanin levels in the tuber than the empty vector control (EV) or SWPA2-MYB1 plants. When combined, our results indicated that overexpression of the IbMYB1 is a highly promising strategy for the generation of transgenic plants with enhanced tissue specific anthocyanin production.

Antioxidative and Hepatocyte Protective Effects of Guava (Psidium guajava L.) Leaves Cultivated in Korea (국내산 구아바(Psidium guajava L.) 잎 추출물의 항산화 활성 및 간세포 보호효과)

  • Cheon, Wonyoung;Seo, Dongyeon;Kim, Younghwa
    • The Korean Journal of Food And Nutrition
    • /
    • v.32 no.1
    • /
    • pp.33-40
    • /
    • 2019
  • The purpose of this study was to evaluate the antioxidant and hepatocyte protective effects of guava (Psidium guajava L.) leaves cultivated in Korea. The contents of the total polyphenol of the extract was 271.57 mg gallic acid equivalent (GAE)/g residue. Antioxidant activities of leaf extract were evaluated by examining the free radical scavenging ability. 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and ${\alpha}-{\alpha}$-diphenyl-${\beta}$-picrylhydrazyl (DPPH) free radical scavenging activities of the extract were 1133.23 mg trolox equivalent antioxidant capacity (TEAC)/g residue and 721.68 mg TEAC/g residue, respectively. The hepatocyte protective effect of guava leaf extract was examined in HepG2 cells. Against tert-butyl hydroperoxide (TBHP), the viability of HepG2 cells were increased by the treatment of leaf extract. In addition, guava leaf extract led to the inhibition of reactive oxygen species (ROS) generated in HepG2 cells. The leaf extract increased the activity of glutathione (GSH), glutathione reductase (GR), and glutathione peroxidase (GPx) against oxidative stress. These results suggested that guava leaves might be regarded as a potential source natural antioxidant and a hepatoprotective material.

Neuroprotective Effects of Spinosin on Recovery of Learning and Memory in a Mouse Model of Alzheimer's Disease

  • Xu, Fanxing;He, Bosai;Xiao, Feng;Yan, Tingxu;Bi, Kaishun;Jia, Ying;Wang, Zhenzhong
    • Biomolecules & Therapeutics
    • /
    • v.27 no.1
    • /
    • pp.71-77
    • /
    • 2019
  • Previous studies have shown that spinosin was implicated in the modulation of sedation and hypnosis, while its effects on learning and memory deficits were rarely reported. The aim of this study is to investigate the effects of spinosin on the improvement of cognitive impairment in model mice with Alzheimer's disease (AD) induced by $A{\beta}_{1-42}$ and determine the underlying mechanism. Spontaneous locomotion assessment and Morris water maze test were performed to investigate the impact of spinosin on behavioral activities, and the pathological changes were assayed by biochemical analyses and histological assay. After 7 days of intracerebroventricular (ICV) administration of spinosin ($100{\mu}g/kg/day$), the cognitive impairment of mice induced by $A{\beta}_{1-42}$ was significantly attenuated. Moreover, spinosin treatment effectively decreased the level of malondialdehyde (MDA) and $A{\beta}_{1-42}$ accumulation in hippocampus. $A{\beta}_{1-42}$ induced alterations in the expression of brain derived neurotrophic factor (BDNF) and B-cell lymphoma-2 (Bcl-2), as well as inflammatory response in brain were also reversed by spinosin treatment. These results indicated that the ameliorating effect of spinosin on cognitive impairment might be mediated through the regulation of oxidative stress, inflammatory process, apoptotic program and neurotrophic factor expression,suggesting that spinosin might be beneficial to treat learning and memory deficits in patients with AD via multi-targets.

In-vitro antioxidant activity of flavonoids from Acer okamotoanum

  • Kim, Ji Hyun;Kim, Hyun Young;Lee, Sanghyun;Cho, Eun Ju
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.761-767
    • /
    • 2018
  • Degenerative diseases are commonly associated with excess free radicals. Acer okamotoanum, a plant endemic to Korea, is reported to have anti-oxidant, anti-cancer, and anti-viral activities. We previously isolated flavonoids from the ethyl acetate fraction of A. okamotoanum such as quercitrin (QU), isoquercitrin (IQ), and afzelin (AF). In the present study, the in vitro antioxidant activity of flavonoids such as QU, IQ, and AF isolated from the ethyl acetate fraction of A. okamotoanum were investigated by measuring the free radical scavenging activity including 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl radical ($^{\cdot}OH$), and superoxide anion ($O_2{^-}$). The flavonoids (QU, IQ, and AF) concentration-dependently showed a DPPH radical scavenging activity. In particular, QU and IQ showed a higher DPPH radical scavenging activity than that of AF. In addition, the flavonoids (QU, IQ, and AF) at $10{\mu}g/mL$ showed over an 80% scavenging effect against $^{\cdot}OH$ radical production. Furthermore, the $O_2{^-}$ radical scavenging activity of the flavonoids, QU, IQ, and AF increased in a dose-dependent manner. Particularly, IQ exerted the strongest scavenging activities against $^{\cdot}OH$ and $O_2{^-}$ radicals among the other flavonoids. These results indicate that the flavonoids from A. okamotoanum, in particular IQ, would have a protective activity against oxidative stress induced by free radicals, and potentially be considered as a natural antioxidant agent.

Pre- and Postsynaptic Actions of Reactive Oxygen Species and Nitrogen Species in Spinal Substantia Gelatinosa Neurons

  • Park, Areum;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • v.43 no.4
    • /
    • pp.209-216
    • /
    • 2018
  • Reactive oxygen species (ROS) and nitrogen species (RNS) are involved in cellular signaling processes as a cause of oxidative stress. According to recent studies, ROS and RNS are important signaling molecules involved in pain transmission through spinal mechanisms. In this study, a patch clamp recording was used in spinal slices of rats to investigate the action mechanisms of $O_2{^{{\bullet}_-}}$ and NO on the excitability of substantia gelatinosa (SG) neuron. The application of xanthine and xanthine oxidase (X/XO) compound, a ROS donor, induced inward currents and increased the frequency of spontaneous excitatory postsynaptic currents (sEPSC) in slice preparation. The application of S-nitroso-N-acetyl-DL-penicillamine (SNAP), a RNS donor, also induced inward currents and increased the frequency of sEPSC. In a single cell preparation, X/XO and SNAP had no effect on the inward currents, revealing the involvement of presynaptic action. X/XO and SNAP induced a membrane depolarization in current clamp conditions which was significantly decreased by the addition of thapsigargin to an external calcium free solution for blocking synaptic transmission. Furthermore, X/XO and SNAP increased the frequency of action potentials evoked by depolarizing current pulses, suggesting the involvement of postsynaptic action. According to these results, it was estblished that elevated ROS and RNS in the spinal cord can sensitize the dorsal horn neurons via pre- and postsynaptic mechanisms. Therefore, ROS and RNS play similar roles in the regulation of the membrane excitability of SG neurons.

The antioxidant activity of steamed ginger and its protective effects on obesity induced by high-fat diet in C57BL/6J mice

  • Kim, Hee-Jeong;Kim, Bohkyung;Mun, Eun-Gyung;Jeong, Soon-Yeon;Cha, Youn-Soo
    • Nutrition Research and Practice
    • /
    • v.12 no.6
    • /
    • pp.503-511
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: Ginger, a root vegetable, is known to have antioxidant and antiobesity effects. Preparation, such as by steaming, can affect the chemical composition of prepared root vegetables or herbs and can change their functional activities. In the present study, we investigated the protective effects of steamed ginger against oxidative stress and steatosis in C57BL/6J mice fed a high-fat diet. MATERIAL/METHODS: The levels of polyphenols and flavonoids in two different extracts of steamed ginger, i.e., water extract (SGW) and ethanolic extract (SGE); as well, their antioxidant activities were examined. Forty male C57BL/6J mice were fed a normal diet (ND, n = 10), high-fat diet (HFD, 60% fat, w/w, n = 10), HFD supplemented with 200 mg/kg of SGE or garcinia (GAR) by weight (SGED or GARD, respectively, n = 10) for 12 weeks. Serum chemistry was examined, and the expressions of genes involved in lipid metabolism were determined in the liver. Histological analysis was performed to identify lipid accumulations in epididymal fat pads and liver. RESULTS: The SGE had higher contents of polyphenols and flavonoids and higher DPPH and $ABTS^+$ free radical scavenging activities compared to those of SGW. Treatment with SGE or GAR significantly decreased the HFD-induced weight gain. Both SGE and GAR significantly reduced the high serum total cholesterol (TC), triglyceride (TG) and low-density lipoprotein levels induced by HFD. Compared to ND, HFD significantly increased hepatic TC and TG levels. SGE or GAR supplementation significantly decreased the increase of hepatic lipids by HFD. Interestingly, SGE had a more significant effect in reducing hepatic TC and TG levels than GAR. Furthermore, hepatic genes involved in lipogenesis and lipolysis were altered in both the SGED and GARD groups. CONCLUSIONS: The present study indicates that steamed ginger supplementation can decrease plasma TC and TG and can inhibit liver steatosis by regulating the expressions of hepatic genes.

Effect of Promoters on the Heme Production in a Recombinant Corynebacterium glutamicum (재조합 Corynebacterium glutamicum으로부터 헴첼 생산에 미치는 프로모터의 효과)

  • Yang, Hyungmo;Kim, Pil
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.3
    • /
    • pp.337-342
    • /
    • 2019
  • We published that bacterial heme was over-produced in a recombinant Corynebacterium glutamicum expressing 5-aminolevulinic acid synthase ($hemA^+$) under control of a constitutive promoter ($P_{180}$) and the heme-producing C. glutamicum had commercial potentials; as an iron feed additive for swine and as a preservative for lactic acid bacteria. To enhance the heme production, the $hemA^+$ gene was expressed under controls of various promoters in the recombinant C. glutamicum. The $hemA^+$ expression by $P_{gapA}$ (a constitutive glycolytic promoter of glyceraldehyde-3-phosphate dehydrogenase) led 75% increase of heme production while the expression by $P_{H36}$ (a constitutive, very strong synthetic promoter) resulted in 50% decrease compared with the control ($hemA^+$ expression by $P_{180}$ constitutive promoter). The $hemA^+$ expression by a late log-phase activating $P_{sod}$ (an oxidative-stress responding promoter of superoxide dismutase) led 50% greater heme production than the control. The $hemA^+$ expression led by a heat-shock responding chaperone promoter ($P_{dnaK}$) resulted in 121% increase of heme production at the optimized heat-shock conditions. The promoter strength and induction phase are discussed based on the results for the heme production at an industrial scale.

Berberine Alleviates Paclitaxel-Induced Neuropathy

  • Rezaee, Ramin;Monemi, Alireza;SadeghiBonjar, Mohammad Amin;Hashemzaei, Mahmoud
    • Journal of Pharmacopuncture
    • /
    • v.22 no.2
    • /
    • pp.90-94
    • /
    • 2019
  • Objectives: Paclitaxel (PTX) as an anticancer drug used against solid cancers, possesses adverse reactions such as neuropathic pain which has confined its use. PTX-induced neuropathic pain is mediated via activation of oxidative stress. Berberine (BER), an isoquinoline phytochemical found in several plants, exerts strong antioxidant and painkilling properties. In the current study, we aimed to evaluate pain-relieving effect of BER in a mouse model of PTX-induced neuropathic pain. Methods: This study was done using 42 male albino mice that were randomly divided into 6 groups (n = 7) as follow: Sham-operated (not treated with PTX), negative control group (PTX-treated mice receiving normal saline), BER 5, 10, and 20 mg/kg (PTX-treated mice receiving BER) and positive control group (PTX-treated mice receiving imipramine 10 mg/kg). Neuropathic pain was induced by intraperitoneal administration of four doses of PTX (2 mg/kg/day) on days 1, 3, 5 and 7. Then, on day 7, hot plate test was done to assess latency to heat to measure possible anti-neuropathic pain effect of BER. Results: Four doses of PTX 2 mg/kg/day induced neuropathy that was reduced by BER at all time-points (i.e. 0, 30, 60, 90 and 120 min) after injection (P < 0.001 in comparison to control). The statistical analysis of data showed significant differences between groups (P < 0.001 in comparison to negative control), at 30, 60, 90 and 120 min after injection of BER 5, 10 and 20 mg/kg; in other words, 30, 60, 90 and 120 min after BER administration, neuropathic pain was significantly reduced as compared to normal saline-treated mice. Conclusion: Altogether, our results showed that PTX could induce neuropathic pain as reflected by hyperalgesia and BER could alleviate PTX-induced thermal hyperalgesia.

The Effect of Glehnia Littoralis on Alpha-amanitin Induced Hepatotoxicity in a Murine Model (백서 모델에서 알파 아마니틴에 의한 간독성에 대한 갯방풍의 보호 효과)

  • Ryu, Chang Yeon;Sun, Kyung Hoon;Hong, Ran;Park, Yongjin
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.16 no.2
    • /
    • pp.108-115
    • /
    • 2018
  • Purpose: Glehnia littoralis has been reported to have several pharmacological properties but no in vivo reports describing the protective effects of this plant on${\alpha}$-amanitin-induced hepatotoxicity have been published. ${\alpha}$-Amanitin is a peptide found in several mushroom species that accounts for the majority of severe mushroom poisonings leading to severe hepatonecrosis. In our previous in vitro study, we found that ${\alpha}$-amanitin induced oxidative stress, which may contribute to its severe hepatotoxicity. The aim of this study was to investigate whether Glehnia littoralis acetate extract (GLEA) has protective antioxidant effects on ${\alpha}$-amanitin-induced hepatotoxicity in a murine model. Methods: Swiss mice (n=40 in all groups) were divided into four groups (n=10/group). Three hours after giving ${\alpha}$-amanitin (0.6 mg/kg, i.p.) to the mice, they were administered silibinin (50 mg/kg/d, i.p.) or Glehnia littoralis ethyl acetate extract (100 mg/kg/d, oral) therapies once a day for 3 days. After 72 hours of treatment, each subject was killed, cardiac blood was aspirated for hepatic aminotransferase measurement, and liver specimens were harvested to evaluate the extent of hepatonecrosis. The degree of hepatonecrosis was assessed by a pathologist blinded to the treatment group and divided into 4 categories according to the grade of hepatonecrosis. Results: GLEA significantly improved the beneficial functional parameters in ${\alpha}$-amanitin-induced hepatotoxicity. In the histopathological evaluation, the toxicity that was generated with ${\alpha}$-amanitin was significantly reduced by GLEA, showing a possible hepatoprotective effect. Conclusion: In this murine model, Glehnia littoralis was effective in limiting hepatic injury after ${\alpha}$-amanitin poisoning. Increases of aminotransferases and degrees of hepatonecrosis were attenuated by this antidotal therapy.