• Title/Summary/Keyword: Oxidative damage

Search Result 1,489, Processing Time 0.022 seconds

Review of the Antioxidant Effect of Herbal Material in In Vivo Parkinson's Disease Models (파킨슨병 in vivo 모델에서 한약재 및 기능성 식품의 항산화 효과에 대한 고찰)

  • Lee, Gi-hyang;Jeon, Sang-woo;Jeong, Min-jeong;Kim, Hong-jun;Jang, In-soo
    • The Journal of Internal Korean Medicine
    • /
    • v.41 no.6
    • /
    • pp.993-1014
    • /
    • 2020
  • Objective: Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease. Antioxidant stress and inflammatory reactions are important causes of neurodegenerative diseases and are major causes of PD. Many animal experiments have been aimed at treating PD using the antioxidant effects of various traditional medicines and dietary supplements. This review reports the research investigating the antioxidant effects of herbs in in vivo PD models. Methods: The study consisted of a database search for articles related to PD and herbal treatments using the OASIS, NDSL, KTKP, Korean KISS, PubMed, Science Direct, CNKI, Wanfang, and J-STAGE databases. The search period was limited from the start of the search engine application to November 14, 2019. Studies were selected to confirm the antioxidant effects of herbal medicines in an in vivo PD model. Results: Eighty-two studies were summarized for plant species, extracts (or compounds), animal models, neurotoxins, and functional results. The most frequently used herbal materials were Bacopa monnieri, Camellia sinensis, Centella asiatica, and Withania somnifera. MPTP and 6-OHDA were the most commonly used neurotoxins for inducing PD. Most studies confirmed an increased expression and activation of antioxidant enzymes and a decrease in oxidative stress. Herbal materials showed their antioxidant effects regardless of the order of treatment and confirmed their possible use as treatments for the prevention and treatment of neurodegeneration. Conclusion: Many herbal medicines have antioxidant effects and are likely to be effective in delaying neurodegenerative damage by inhibiting or reducing oxidative stress by expression of antioxidant enzymes.

Antioxidant, Cytotoxicity and Cytoprotective Potential of Extracts of Grewia Flava and Grewia Bicolor Berries

  • Masisi, Kabo;Masamba, Riach;Lashani, Keletso;Li, Chunyang;Kwape, Tebogo E.;Gaobotse, Goabaone
    • Journal of Pharmacopuncture
    • /
    • v.24 no.1
    • /
    • pp.24-31
    • /
    • 2021
  • Objectives: Accumulation of cellular reactive oxygen species (ROS) leads to oxidative stress. Increased production of ROS, such as superoxide anion, or a deficiency in their clearance by antioxidant defences, mediates cellular pathology. Grewia Spp fruits are a source of bioactive compounds and have notable antioxidant activity. Although the antioxidant capacity of Grewia Spp has been studied, there is very limited evidence that links the antioxidant activities of Grewia bicolor and Grewia flava to the inhibition of free radical formation associated with damage in biological systems. Methods: This study evaluated the protective effects of Grewia bicolor and Grewia flava extracts against free radical-induced oxidative stress and the resulting cytotoxicity effect using HeLa cells. Antioxidant properties determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and total phenolic content (TPC) assays showed significantly higher (p < 0.05) antioxidant activity in Grewia flava (ethanol extract) than Grewia flava (water extract) and Grewia bicolor (ethanol and water extracts). Results: Using 3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetrazolium bromide or MTT assay, cytotoxicity results showed that extracts of Grewia bicolor and Grewia flava were less toxic to HeLa cells at tested concentrations compared to the untreated control. This confirmed the low toxicity of these edible fruits at the tested concentrations in HeLa cells. Furthermore, hydrogen peroxide (H2O2)-induced cell loss was effectively reduced by pre-incubating HeLa cells with Grewia bicolor and Grewia flava extracts, with Grewia flava (ethanol extract) revealing better protection. Conclusion: The effect was speculated to be associated with the higher antioxidant activity of Grewia flava (ethanol extract). Additional studies will warrant confirmation of the mechanism of action of such effects.

Prevalence of Glucose-6-Phosphate Dehydrogenase (G6PD) Deficiency among Malaria Patients in Southern Thailand: 8 Years Retrospective Study

  • Khammanee, Thunchanok;Sawangjaroen, Nongyao;Buncherd, Hansuk;Tun, Aung Win;Thanapongpichat, Supinya
    • Parasites, Hosts and Diseases
    • /
    • v.60 no.1
    • /
    • pp.15-23
    • /
    • 2022
  • Erythrocytes deficient in glucose-6-phosphate dehydrogenase (G6PD) is more susceptible to oxidative damage from free radical derived compounds. The hemolysis triggered by oxidative agents such as primaquine (PQ) is used for the radical treatment of hypnozoites of P. vivax. Testing of G6PD screening before malaria treatment is not a common practice in Thailand, which poses patients at risk of hemolysis. This retrospective study aimed to investigate the prevalence of G6PD in malaria patients who live in Southern Thailand. Eight hundred eighty-one malaria patients were collected for 8-year from 2012 to 2019, including 785 (89.1%) of P. vivax, 61 (6.9%) of P. falciparum, 27 (3.1%) of P. knowlesi, and 8 (0.9%) of mixed infections. The DiaPlexC genotyping kit (Asian type) and PCR-RFLP were employed to determine the G6PD variants. The result showed that 5 different types of G6PD variants were identified in 26 cases (2.9%); 12/26 (46.2%) had Mahidol (487G>A) and 11/26 (42.3%) had Viangchan (871G>A) variants, while the rest had Kaiping (1388G>A), Union (1360C>T), and Mediterranean (563C>T) variants. G6PD Songklanagarind (196T>A) variant was not found in the study. Our result did not show a significant difference in the malaria parasite densities in patients between G6PD-deficient and G6PD-normal groups. According to our findings, testing G6PD deficiency and monitoring the potential PQ toxicity in patients who receive PQ are highly recommended.

Neuroprotective Effect of Gardeniae Fructus against Oxidative Damage Induced by tert-Butyl Hydroperoxide in PC12 Cells (PC12 cell에서 tert-butyl hydroperoxide로 유도된 산화적 손상에 대한 치자의 신경보호효과)

  • Jong Rok, Lee;Sang Chan, Kim;Sung Hui, Byun;Sook Jahr, Park
    • Herbal Formula Science
    • /
    • v.31 no.1
    • /
    • pp.29-39
    • /
    • 2023
  • Objective : Gardeniae Fructus (GF) is the ripe fruit of Gardenia jasminoides Ellisa with a bitter taste and cold properties. Ingredient compounds including geniposide are known to have anti-inflammatory, antioxidant, and neuroprotective effects. The purpose of this study was to investigate the neuroprotective effect of GF on tBHP-induced PC12 cells. Methods : Cell viability was measured by the MTT assay, and apoptosis was determined by the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The expression level of each protein was monitored by Western blot analysis, and reactive oxygen species (ROS) were analyzed using DCFH-DA. Results : In PC12 cells, tBHP induced cell death through apoptosis with caspase activation and PARP inactivation. Cells treated with tBHP showed an increase in intracellular ROS and depletion of GSH. Pretreatment with GF prevented tBHP-induced apoptosis, reduced ROS, and increased GSH. GF also maintained increased Nrf2 expression in the presence of tBHP. Phosphorylation of JNK and p38 MAPK was increased by tBHP, whereas phosphorylation of ERK was decreased. GF restored changes in ERK and p38 phosphorylation, but not JNK phosphorylation. Conclusion : These results indicate that GF has neuroprotective effects through anti-apoptotic and antioxidant effects mediated by regulation of Nrf2 expression and phosphorylation of ERK and p38. It also demonstrates the potential use of GF as a source of antioxidant and neuroprotective substances.

ROS Scavenger, Ebselen, Has No Preventive Effect in New Hearing Loss Model Using a Cholesterol-Chelating Agent

  • Lee, Min Young;Kabara, Lisa L.;Swiderski, Donald L.;Raphael, Yehoash;Duncan, R. Keith;Kim, Young Ho
    • Journal of Audiology & Otology
    • /
    • v.23 no.2
    • /
    • pp.69-75
    • /
    • 2019
  • Background and Objectives: The antioxidant ebselen will be able to limit or prevent the ototoxicity arising from 2-hydroxypropyl-β-cyclodextrin (HPβCD). Niemann-Pick Type C (NPC) disease is a disorder of lysosomal storage manifested in sphingolipidosis. Recently, it was noted that experimental use of HPβCD could partially resolve the symptoms in both animals and human patients. Despite its desirable effect, HPβCD can induce hearing loss, which is the only major side effect noted to date. Understanding of the pathophysiology of hearing impairment after administration of HPβCD and further development of preventive methods are essential to reduce the ototoxic side effect. The mechanisms of HPβCD-induced ototoxicity remain unknown, but the resulting pathology bears some resemblance to other ototoxic agents, which involves oxidative stress pathways. To indirectly determine the involvement of oxidative stress in HPβCD-induced ototoxicity, we tested the efficacy of an antioxidant reagent, ebselen, on the extent of inner ear side effects caused by HPβCD. Materials and Methods: Ebselen was applied prior to administration of HPβCD in mice. Auditory brainstem response thresholds and otopathology were assessed one week later. Bilateral effects of the drug treatments also were examined. Results: HPβCD-alone resulted in bilateral, severe, and selective loss of outer hair cells from base to apex with an abrupt transition between lesions and intact areas. Ebselen co-treatment did not ameliorate HPβCD-induced hearing loss or alter the resulting histopathology. Conclusions: The results indirectly suggest that cochlear damage by HPβCD is unrelated to reactive oxygen species formation. However, further research into the mechanism(s) of HPβCD otopathology is necessary.

The Study on Antithrombosis and Inflammation according to The Broth Preparation Method of Gamijoukyungtang (가미조경탕(加味調經湯)의 전탕(煎湯) 방법에 따른 항혈전 및 염증에 관한 연구)

  • Ahn, Kyu-Hwan;Choe, Chang-Min;Kim, Song-Baeg;Cho, Han-Baek
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.22 no.1
    • /
    • pp.53-78
    • /
    • 2009
  • Purpose: In this study, we investigated the anti-thrombotic and antiinflammatory efficacy of "Gamijoukyungtang(GJKT)". Methods: We studied inhibitory effects of platelet aggregation, FXa activation, $TXB_2$ and $PGE_2$ biosynthesis and suppressive effects of GPIIb/IIIa activity and oxidative damage, pro-inflammatory cytokine reduction effects of 'GJKT(by press extractor)/GJKT-1(by pressless extractor)' in vitro. Also, we studied suppression of pulmonary embolism, AV shunt model in rats and shortening of Rat tail bleeding time in vivo. Results: GJKT/GJKT-1 extract showed inhibitory effects on GPIIb/IIIaactivities and platelet aggregation induced by ADP, epinephrine, collagen and arachidonic acid. They suppressed biosynthesis of $PGE_2$ but GJKT-1 only supressed biosynthesis of $TXB_2$. In FXa assay, they inhibited activation of FXa. they suppressed pulmonary embolism triggered by collagen and epinephrine. In AV shunt model, they decreased the weights of AV shunt thrombus. they inhibited pro-inflammatory cytokines and decreased oxidative damages caused by DPPH. Conclusion: We confirmed the anti-thrombosis, and ant-inflammatory efficacy of 'GJKT(by press extractor)/GJKT-1(by pressless extractor)'.

ROS Scavenger, Ebselen, Has No Preventive Effect in New Hearing Loss Model Using a Cholesterol-Chelating Agent

  • Lee, Min Young;Kabara, Lisa L.;Swiderski, Donald L.;Raphael, Yehoash;Duncan, R. Keith;Kim, Young Ho
    • Korean Journal of Audiology
    • /
    • v.23 no.2
    • /
    • pp.69-75
    • /
    • 2019
  • Background and Objectives: The antioxidant ebselen will be able to limit or prevent the ototoxicity arising from 2-hydroxypropyl-β-cyclodextrin (HPβCD). Niemann-Pick Type C (NPC) disease is a disorder of lysosomal storage manifested in sphingolipidosis. Recently, it was noted that experimental use of HPβCD could partially resolve the symptoms in both animals and human patients. Despite its desirable effect, HPβCD can induce hearing loss, which is the only major side effect noted to date. Understanding of the pathophysiology of hearing impairment after administration of HPβCD and further development of preventive methods are essential to reduce the ototoxic side effect. The mechanisms of HPβCD-induced ototoxicity remain unknown, but the resulting pathology bears some resemblance to other ototoxic agents, which involves oxidative stress pathways. To indirectly determine the involvement of oxidative stress in HPβCD-induced ototoxicity, we tested the efficacy of an antioxidant reagent, ebselen, on the extent of inner ear side effects caused by HPβCD. Materials and Methods: Ebselen was applied prior to administration of HPβCD in mice. Auditory brainstem response thresholds and otopathology were assessed one week later. Bilateral effects of the drug treatments also were examined. Results: HPβCD-alone resulted in bilateral, severe, and selective loss of outer hair cells from base to apex with an abrupt transition between lesions and intact areas. Ebselen co-treatment did not ameliorate HPβCD-induced hearing loss or alter the resulting histopathology. Conclusions: The results indirectly suggest that cochlear damage by HPβCD is unrelated to reactive oxygen species formation. However, further research into the mechanism(s) of HPβCD otopathology is necessary.

Age-related Changes of DNA Damage and Antioxidative Capacity in Rats (노화과정에 따른 흰쥐의 DNA손상과 항산화능의 변화)

  • 노경아;김미경
    • Journal of Nutrition and Health
    • /
    • v.35 no.3
    • /
    • pp.279-290
    • /
    • 2002
  • This study was performed to assess age-related changes in DNA damage and antioxidative capacity in 4, 8, 12, 16, 20, and 24 months old Sprague-Dawley male rats. The following were measured the degree of oxidative DNA damage as indicated by levels of 8-hydroxy-2'-deoxyguanosine (80HdG) in the kidney ; the peroxidized lipid concentrations in the plasma and the liver, as indicated by the levels of thiobarbituric acid reactive substances (TBARS); and the levels of antioxidant enzyme activities in the erythrocytes and the liver. Both body weight (BW) and epididymal fat pad (EFP) weight per BW increased with age until 16 months, then decreased slightly from 20 to 24 months. However, the weights of the liver, kidney and spleen per BW decreased with age. Concentrations of 8-OHdG in the kidney increased with age, only slightly front 4 to 16 months, and then markedly from 16 to 24 months. TBARS concentrations in the plasma and liver were shown to increase with age, being lowest in the 4 month-old group and highest in the 24 month-old group. Superoxide dismutase (SOD) activity in the erythrocytes increased with age Catalase activity in the erythrocytes increased from 4 to 16 months, then decreased from 20 to 24 months. Glutathione peroxidase (GSH-Px) activity in the erythrocytes showed no age-related change. Liver SOD activity decreased with age, particularly from 16 to 20 months, but catalase and GSH-Px activities in the liver showed no significant changes. These results showed that during the normal aging of SD rats, DNA damage in the kidney and TBARS concentrations in the plasma and liver increased with age, particularly after 16 months, and the imbalance of antioxidative enzyme activities in the erythrocytes accelerated with age.

Induction of DNA Damage in L5178Y Cells Treated with Gold Nanoparticle

  • Kang, Jin-Seok;Yum, Young-Na;Kim, Joo-Hwan;Song, Hyun-A;Jeong, Jin-Young;Lim, Yong-Taik;Chung, Bong-Hyun;Park, Sue-Nie
    • Biomolecules & Therapeutics
    • /
    • v.17 no.1
    • /
    • pp.92-97
    • /
    • 2009
  • As nanomaterials might enter into cells and have high reactivity with intracellular structures, it is necessary to assay possible genotoxic risk of them. One of these approaches, we investigated possible genotoxic potential of gold nanoparticle (AuNP) using L5178Y cells. Four different sizes of AuNP (4, 15, 100 or 200 nm) were synthesized and the sizes and structures of AuNP were analyzed using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and stability was analyzed by a UV/Vis. Spectrophotometer. Cytotoxicity was assessed by direct cell counting, and cellular location was detected by dark field microscope at 6, 24 and 48 h after treatment of AuNP. Comet assay was conducted to examine DNA damage and tumor necrosis factor (TNF)-${\alpha}$ mRNA level was assay by real-time reverse transcription polymerase chain reaction. Synthetic AuNP (4, 50, 100 and 200 nm size) had constant characteristics and stability confirmed by TEM, SEM and spectrophotometer for 10 days, respectively. Dark field microscope revealed the location of AuNP in the cytoplasm at 6, 24 and 48 h. Treatment of 4 nm AuNP induced dose and time dependent cytotoxicity, while other sizes of AuNP did not. However, Comet assay represented that treatment of 100 nm and 200 nm AuNP significantly increased DNA damage compared to vehicle control (p <0.01). Treatment of 100 nm and 200 nm AuNP significantly increased TNF-${\alpha}$ mRNA expression compared to vehicle control (p<0.05, p<0.01, respectively). Taken together, AuNP induced DNA damage in L5178Y cell, associated with induction of oxidative stress.

Facilitation of cisplatin-induced acute kidney injury by high salt intake through increased inflammatory response (염분 섭취에 의한 시스플라틴 유도 급성 신장 손상의 촉진과 염증 반응과의 연관성)

  • Ji, Seon Yeong;Hwangbo, Hyun;Kim, Min Yeong;Kim, Da Hye;Park, Beom Su;Park, Joung-Hyun;Lee, Bae-Jin;Lee, Hyesook;Choi, Yung Hyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.13 no.2
    • /
    • pp.86-93
    • /
    • 2021
  • A high salt diet contributes to kidney damage by causing hypoxia and oxidative stress. Recently, an increase in dietary salt has been reported to induce an inflammatory phenotype in immune cells, further contributing to kidney damage. However, studies on the exact mechanism and role of a high salt diet on the inflammatory response in the kidneys are still insufficient. In this study, a cisplatin-induced acute kidney injury model using C57BL/6 mice was used to analyze the effect of salt intake on kidney injury. Results showed that high salt administration aggravated kidney edema in mice induced by treatment with cisplatin. Moreover, the indicators of kidney and liver function impairment were significantly increased in the group cotreated with high salt compared with that treated with cisplatin alone. Furthermore, the exacerbation of kidney damage by high salt administration was also associated with a decrease in the number of cells in the immune regulatory system. Additionally, high salt administration further decreased renal perfusion functions along with increased cisplatin-induced damage to proximal tubules. This was accompanied by increased expression of T cell immunoglobulin, mucin domain 1 (a biomarker of kidney injury), and Bax (a pro-apoptotic factor). Moreover, cisplatin-induced expression of proinflammatory mediators and cytokines, including cyclooxygenase-2 and tumor necrosis factor-α in kidney tissue, was further increased by high salt intake. Therefore, these results indicate that the kidney's inflammatory response by high salt treatment can further promote kidney damage caused by various pathological factors.