Age-related Changes of DNA Damage and Antioxidative Capacity in Rats

노화과정에 따른 흰쥐의 DNA손상과 항산화능의 변화

  • 노경아 (이화여자대학교 식품영양학과) ;
  • 김미경 (이화여자대학교 식품영양학과)
  • Published : 2002.04.01

Abstract

This study was performed to assess age-related changes in DNA damage and antioxidative capacity in 4, 8, 12, 16, 20, and 24 months old Sprague-Dawley male rats. The following were measured the degree of oxidative DNA damage as indicated by levels of 8-hydroxy-2'-deoxyguanosine (80HdG) in the kidney ; the peroxidized lipid concentrations in the plasma and the liver, as indicated by the levels of thiobarbituric acid reactive substances (TBARS); and the levels of antioxidant enzyme activities in the erythrocytes and the liver. Both body weight (BW) and epididymal fat pad (EFP) weight per BW increased with age until 16 months, then decreased slightly from 20 to 24 months. However, the weights of the liver, kidney and spleen per BW decreased with age. Concentrations of 8-OHdG in the kidney increased with age, only slightly front 4 to 16 months, and then markedly from 16 to 24 months. TBARS concentrations in the plasma and liver were shown to increase with age, being lowest in the 4 month-old group and highest in the 24 month-old group. Superoxide dismutase (SOD) activity in the erythrocytes increased with age Catalase activity in the erythrocytes increased from 4 to 16 months, then decreased from 20 to 24 months. Glutathione peroxidase (GSH-Px) activity in the erythrocytes showed no age-related change. Liver SOD activity decreased with age, particularly from 16 to 20 months, but catalase and GSH-Px activities in the liver showed no significant changes. These results showed that during the normal aging of SD rats, DNA damage in the kidney and TBARS concentrations in the plasma and liver increased with age, particularly after 16 months, and the imbalance of antioxidative enzyme activities in the erythrocytes accelerated with age.

본 연구에서는 정상적인 노화과정에서는 DNA 손상정도 및 항산화능의 변화를 알고자 생후 4, 8, 12, 16, 20, 24개월 된 Sprague-Dawley종 수컷 흰쥐의 신장조직의 80HdG 농도, 혈장과 간의 과산화지질 농도, 적혈구와 간내 항산화계 효소활성 등을 측정하였다. 흰쥐의 체중과 단위체중당 부고환지방의 무게는 가령에 따라 증가하는 경향을 보이다가 20개월과 24개월에서 약간 감소하였고, 단위체중당 간과 신장, 비장의 무게는 연령이 증가함에 따라 감소되는 경향을 보였다. 신장 조직내 DNA 손상의 지표인 80HdG의 농도는 4∼16개월까지는 완만하게 증가하다가 20, 24개월에서 큰 폭으로 증가되어 가령에 따른 증가 경향이 뚜렷하였다. 혈장과 간내 지질 과산화물 생성량은 4개월에서 가장 낮았다가 가령에 따라 증가하여 24개월에서 최고치를 보이는데, 혈장의 지질 과산화물 농도는 12∼16개월 사이에, 간의 경우는 16∼20개월 사이에 가장 큰 폭으로 증가하였다. 적혈구 SOD 효소 활성은 4개월에서 가장 낮았고 24개월에서 가장 높게 나타나 가령에 따라 증가하는 경향을 보였고, 적혈구 catalase 활성은 4개월부터 16개월까지는 증가하다가 20, 24개월에서 저하되었으며, 반면 GSH-Px는 가령에 따른 변화를 보이지 않았다. 간의 SOD 활성은 적혈구 SOD 활성과 달리 가령에 따라 감소하는 경향을 보였는데 특히 16∼20개월 사이에 가장 큰 폭으로 감소하였고, 간의 catalase, GSH-Px 활성은 가령에 따른 변화가 나타나지 않았다.

Keywords

References

  1. Hannan D. Free radical theory of aging. Mutation Res 275: 257-266,1992 https://doi.org/10.1016/0921-8734(92)90030-S
  2. Husain S R, Cillard J, Cillard P. Hydroxyl radical scavenging activIty of flavonoids. Pfiytochemistry 26(9) : 2489-2491,1987 https://doi.org/10.1016/S0031-9422(00)83860-1
  3. Hohe L, Becker R, Bngelius R, Lengfelder E, tting F. Convenient assays foi superoxide dismutase. CRC Handbook of free Radicats and Antwxidants in Biomedicine pp.287-293, 1992
  4. Johansson LH, Borg LA. A spectrophotometric method for determination of catalase activity in small tissue samples. AnatyticaI Biochemistry 174: 331-336,1988 https://doi.org/10.1016/0003-2697(88)90554-4
  5. Flohe L. Determination of glutathione peroxidase. CRC Handbook of Free Radicats and Antioxidations in Biomedicine pp.281-286,1992
  6. Saul RL, Ames BN. Background levels of DNA damage in the population, In: Simic MG, Grossman L, Upton AC(ed.), Mechanisms of DNA Damage and Repair, Plenum. New York, pp.113-129
  7. Demple B, Harrison L. Repair of oxidative damage to DNA: Enzymology and Biology. Annu Rev Biochem 63: 915-48, 1994 https://doi.org/10.1146/annurev.bi.63.070194.004411
  8. Wiseman H, HaBiweH B. Damage to DNA by reactive oxygen and nitrogen spedes: role in inflammatory disease and progression to cancer. Biochem J 313: 17-29,1996 https://doi.org/10.1042/bj3130017
  9. Ames BN, Shigenaga MK, Hagen TM. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci (USA) 90: 7915-7922,1993 https://doi.org/10.1073/pnas.90.17.7915
  10. Halliwell B. Antioxidant characterization: Methodology and mechsmism. Biochemical Pharmacohgy 49(10): 1341-1348,1995 https://doi.org/10.1016/0006-2952(95)00088-H
  11. Shigenaga MK, Gimeno CJ, Ames BN. Urinary 8-hydroxy-2'deo-xyguanosine as a biological marker of in vivo oxidative DNA damage. Proc Natl Acad Sci (USA) 86: 9677-9701,1989 https://doi.org/10.1073/pnas.86.24.9677
  12. Loft S, Vistisen K, Ewertz M, et al. Oxidative DNA damage estimated by 8-hydroxydeoxyguanosine excretion in human: influence of smoking, gender and body mass index. Carcmogenesis 13(12): 2241-2247, 1992 https://doi.org/10.1093/carcin/13.12.2241
  13. Shibutani S, Takeshita M, Grollman AP. Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature (London) 349: 431-434,1991 https://doi.org/10.1038/349431a0
  14. Fraga CG, Shigenaga MK, Park JW, Degan P, Ames BN. Oxid a-tive damage to DNA during aging: 8-hydroxy-2'deoxyguano-sine in rat organ DNA and urine. Proc Natt Acad Sci (USA) 87: 4533-4537,1990 https://doi.org/10.1073/pnas.87.12.4533
  15. Lee YG, Cho SR, Lee DW. The influence of ginseng on the aging of senescence accelerated mouse. Kor J Gerontol 5(1): 1-7, 1995
  16. Choi JH, Kim DW, Kim JH, Kim HS. Effct of red ginseng ex tract (RGE) on leaming and memory impairment animal model SAMP8 II. Feeding effect of RGE on Oxygen Radicals and their scavenger enzymes of SAMP8 brain. Kor J Gerontol 7(2): 71-75,1997
  17. Choi JH, Kim DW, Kim KS, Kim CM, Baek YH. Effect of reed root extract (RGE) on leaming and memory impainnent animal model SAMP8 II. Feeding effect of RRE on Oxygen Radicals and their scavenger enzymes of SAMP8 brain. Kor J Gerontol 7(3): 23-28,1997
  18. Paek SK, Kim HY, Yang SD, Song CW, Shin TK, Han SS. The effects of Opuntia ficus-indica fmit powder on andoxidant parameters in senescence accelerated mouse (SAM). Kor J Gerontol 9(1): 70-77,1999
  19. Helbock HJ, Bedonan KB, Ames BN. 8-Hydroxydeoxyguanosine and 8 -hydroxyguanine as biomarkers of oxidative DNA damage, In: Methods in Enzymology vol 300 'oxidants and antioxidants part B' ed. Lester Packer, pp.156-163, Academic Piess, 1999
  20. Yagi K. Assay for blood plasma or serum, In: Methods in Enzymology, Academic Press Inc. NY vol 105, pp.328-331, 1984
  21. Buddngham KW. Effect of dietary polysatuiated/saturated fatty add ratio and dietary vitamin E on lipid peroxidation in the rat. J Nutr 115: 1425-1435,1985
  22. Flohe L, tting F. Superoxide dismutase assay, In: Methods in Enzymology, vol 105 'Oxygen Radicals in Biological Systems ed. Lester Packer, pp.93-114, Academic Press, 1984 https://doi.org/10.1016/S0076-6879(84)05013-8
  23. Lowry OH, Rosebrough NJ, Farr AL and Randall RJ. Protein measurement with folin phenol reagent. J Biol Chem 193: 265-275, 1951
  24. Flohe L, Gunzler WA. Assays of glutathione peroxidase, In: Methods in Enzymology, vol 105 'Oxygen Radicals in Biological Systems' ed. Lester Packer, pp.114-121, Academic Press, 1984
  25. Narath E, Skalicky M, Villdik A. Vountary and forced exercise influence the survival and body composition of ageing male rats differently. Experimental Gerontotogy 36: 1699-1711, 2001 https://doi.org/10.1016/S0531-5565(01)00145-0
  26. Kim SH, Kim HY. No-Wha(Aging), Min-um-Sa, 1995
  27. Connan B, Michel JB. Glomerular filtration, renal blood flow, and solute excretion in consdous aging rats. Am J Physiol 253(4Pt2): R555-560, 1987
  28. Comian B, Pratz J, Poujeol P. Changes in anatoiny, glomerular filtration, and solute excretion in aging rat kidney. Am J Physiol 248(3 Pt 2): R282-287,1985
  29. Schmerold I, Niedennuller H. Levels of 8-hydroxy-2'-deoxygua- nosine in cellular DNA from 12 tissues of young and old Sprague-Dawley rats. Experimental Gemntology 36(8): 1375-1386, 2001 https://doi.org/10.1016/S0531-5565(01)00103-6
  30. Muchova J, Sustrova M, Garaiova I, Liptakova A, Blazicek P, Kvasnicka P, Pueschel S, Durackova Z. Influence of age on activities of antioxidant enzymes and lipid peroxidation products in erythrocytes and neutrophils of Down syndrome paHents. Free Radic Biol Med 31(4): 499-508, 2001 https://doi.org/10.1016/S0891-5849(01)00609-8
  31. Jang IS, Chae KR, Cho JS. Effects of age and strain on small intestinal and hepatic antioxidant defense enzymes m Wistar and Fisher 344 rats. Mechanisms of Ageing and Development 122: 561-570, 2001 https://doi.org/10.1016/S0047-6374(01)00236-6
  32. Dahn HC, Benedetti MS, Dostert P. Differential Changes in superoxide dismutase activity in brain and liver of old rats and mice. J Neurochem 40: 1003-1007,1983 https://doi.org/10.1111/j.1471-4159.1983.tb08084.x
  33. Kasapoglu M, Ozben T. Alteradons of andoxidant enzymes and oxidative stress markers in aging. Experanental Gerontology 36: 209-220, 2001 https://doi.org/10.1016/S0531-5565(00)00198-4
  34. Inal ME, Kanbak G, Sunal E. Antioxidant enzyme acHvities and malondialdehyde levels related to aging. Ctinica Chimica Acta 305: 75-80, 2001 https://doi.org/10.1016/S0009-8981(00)00422-8
  35. Kim JW, No JK, Ikeno Y, Yu BP, Choi JS, Yokozawa T, Chung HY. Age-related changes in redox status of rat serum. Archives of Gerontology and Geriatrics 34: 9-17, 2002 https://doi.org/10.1016/S0167-4943(01)00178-9
  36. King CM, Bristow-Ciaig HE, Gillespie ES, Barnett YA. In vivo antioxidant status, DNA damage, mutation and DNA repair capadty in cultured lymphocytes from healthy 75-to 80-yearold humans. Mutat Res 377(1): 137-147,1997 https://doi.org/10.1016/S0027-5107(97)00072-9